Skip to main content
Log in

On the Ergodic Capacity of Distributed MIMO Antenna Systems

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We consider distributed multiple-input–multiple-output (MIMO) antenna systems, along with their certain generalizations. We show that distributed MIMO configuration can be mapped to a semicorrelated (one side correlated) Wishart model. For a given set of large-scale fading parameters, associated with the path loss and shadow fading, we derive exact and closed-form results for the marginal density of eigenvalues of \(\mathbf{H}^\dag \mathbf{H}\) (or \(\mathbf{H} \mathbf{H} ^\dag\)), where \(\mathbf{H}\) is the channel matrix. We also obtain exact and closed-form expressions for the ergodic channel capacity with the aid of Meijer G-function. The ergodic capacity of semicorrelated Rayleigh fading channel follows as a special case. All analytical results are validated by comparison with Monte-Carlo simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. Except, may be, the large-scale channel state information.

  2. We use the notation \(\mathcal{L}_n^{(m)}(x)\) for the associated Laguerre polynomials, instead of the usual \(L_n^{(m)}(x)\), to avoid confusion with the number L of the antennas.

References

  1. Foschini, G. J., & Gans, M. J. (1998). On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 6(2), 311–335.

    Article  Google Scholar 

  2. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunication, 10(6), 585–595.

    Article  Google Scholar 

  3. Heath, R., Peters, S., Wang, Y., & Zhang, J. (2013). A current perspective on distributed antenna systems for the downlink of cellular systems. IEEE Communications Magazine, 51(4), 161–167.

    Article  Google Scholar 

  4. Saleh, A. A. M., Rustako, A. J., & Roman, R. (1987). Distributed antennas for indoor radio communications. IEEE Transactions on Communications, 35(12), 1245–1251.

    Article  Google Scholar 

  5. Clark, M. V., et al. (2001). Distributed versus centralized antenna arrays in broadband wireless networks. In Proceedings of IEEE vehicular technology conference (Vol. 1, pp. 33–37).

  6. Roh, W., & Paulraj, A. (2002). Outage performance of the distributed antenna systems in a composite fading channel. In Proceedings of IEEE vehicular technology conference (Vol. 3, pp. 1520–1524).

  7. Roh, W., & Paulraj, A. (2002). MIMO channel capacity for the distributed antenna systems. In Proceedings of IEEE vehicular technology conference (Vol. 2, pp. 706–709).

  8. Xiao, L., Dai, L., Zhuang, H., Zhou, S., & Yao, Y. (2003). Information-theoretic capacity analysis in MIMO distributed antenna systems. In Proceedings of IEEE vehicular technology conference (Vol. 1, pp. 779–782).

  9. Zhuang, H., Dai, L., Xiao, L., & Yao, Y. (2003). Spectral efficiency of distributed antenna systems with random antenna layout. Electronics Letters, 39(6), 495–496.

    Article  Google Scholar 

  10. Ni, Z., & Li, D. (2004). Effect of fading correlation on capacity of distributed MIMO. In Proceedings of IEEE personal, indoor and mobile radio communication conference (Vol. 3, pp. 1637–1641).

  11. Choi, W., & Andrews, J. G. (2007). Downlink performance and capacity of distributed antenna systems in a multicell environment. IEEE Transactions on Wireless Communications, 6(1), 69–73.

    Article  Google Scholar 

  12. Feng, Z., Jiang, Z., Pan, W., & Wang, D. (2008). Capacity analysis of generalized distributed antenna systems using approximation distributions. In Proceedings of 11th IEEE Singapore international conference on communication systems (pp. 828–830).

  13. Feng, W., Zhang, X., Zhou, S., Wang, J., & Xia, M. (2009). Downlink power allocation for distributed antenna systems with random antenna layout. In Proceedings of IEEE vehicular technology conference (VTC 2009-Fall) (pp. 1–5).

  14. Feng, W., Li, Y., Zhou, S., Wang, J., & Xia, M. (2009). Downlink capacity of distributed antenna systems in a multi-cell environment. In Proceedings of IEEE wireless communication networking conference (WCNC’09) (pp. 1–5).

  15. Lee, S.-R., Moon, S.-H., Kim, J.-S., & Lee, I. (2012). Capacity analysis of distributed antenna systems in a composite fading channel. IEEE Transactions on Wireless Communications, 11(3), 1076–1086.

    Article  Google Scholar 

  16. Lee, S.-R., Moon, S.-H., Kim, J.-S., & Lee, I. (2012). On the capacity of MIMO distributed antenna systems. In Proceedings on IEEE international conference on communications (ICC’12) (pp. 4824–4828).

  17. Feng, W., Li, Y., Zhou, S., Wang, J., & Xia, M. (2009). On the optimal radius to deploy antennas in multi-user distributed antenna system with circular antenna layout. In Proceedings of WRI international conference on communications and mobile computing (CMC 2009) (pp. 56–59).

  18. Wang, J.-B., Wang, J.-Y., & Chen, M. (2012). Downlink system capacity analysis in distributed antenna systems. Wireless Personal Communications, 67(3), 631–645.

    Article  Google Scholar 

  19. Qian, Y., Chen, M., Wang, X., & Zhu, P. (2009). Antenna location design for distributed antenna systems with selective transmission. In Proceedings on international conference on wireless communications & signal processing (WCSP’09) (pp. 1–5).

  20. Wen, Y.-P., Wang, J.-Y., & Chen, M. (2013). Ergodic capacity of distributed antenna systems over shadowed Nakagami-m fading channels. In Proceedings of international conference on wireless communications & signal processing (WCSP’13) (pp. 1–6).

  21. Dai, L. (2014). An uplink capacity analysis of the distributed antenna system (DAS): From cellular DAS to DAS with virtual cells. IEEE Transactions on Wireless Communications, 13(5), 2717–2731.

    Article  Google Scholar 

  22. Zhang, H., & Dai H. (2004). On the capacity of distributed MIMO systems. In Proceedings of conference on information sciences and systems (CISS’04) (pp. 1–5).

  23. Dai, L., Zhou, S., & Yao, Y. (2005). Capacity analysis in CDMA distributed antenna systems. IEEE Transactions on Wireless Communications, 4(6), 2613–2620.

    Article  Google Scholar 

  24. Chen, H. M., & Chen, M. (2009). Capacity of the distributed antenna systems over shadowed fading channels. In Proceedings of IEEE 69th vehicular technolology conference (pp. 1–4).

  25. Feng, W., et al. (2011). On the deployment of antenna elements in generalized multi-user distributed antenna systems. Mobile Networks and Applications, 16(1), 35–45.

    Article  MathSciNet  Google Scholar 

  26. Heliot, F., Hoshyar, R., & Tafazolli, R. (2011). An accurate closed-form approximation of the distributed MIMO outage probability. IEEE Transactions on Wireless Communications, 10(1), 5–11.

    Article  Google Scholar 

  27. Alfano, G., Tulino, A. M., Lozano, A., & Verdu, S. (2004). Capacity of MIMO channels with one-sided correlation. In Proceedings of IEEE international symposium on spread spectrum technology and applications (ISSSTA’04) (pp. 515–519).

  28. Simon, S. H., Moustakas, A. L., & Marinelli, L. (2006). Capacity and character expansions: Moment-generating function and other exact results for MIMO correlated channels. IEEE Transactions on Information Theory, 52(12), 5336–5351.

    Article  MathSciNet  MATH  Google Scholar 

  29. Maaref, A., & Aïssa, S. (2007). Eigenvalue distributions of Wishart-type random matrices with application to the performance analysis of MIMO MRC systems. IEEE Transactions on Wireless Communications, 6(7), 2678–2689.

    Article  Google Scholar 

  30. Maaref, A., & Aïssa, S. (2007). Joint and marginal eigenvalue distributions of (non) central complex wishart matrices and PDF-based approach for characterizing the capacity statistics of MIMO Ricean and Rayleigh fading channels. IEEE Transactions on Wireless Communications, 6(10), 3607–3619.

    Article  Google Scholar 

  31. Chiani, M., & Win, M. Z. (2010). MIMO networks: The effects of interference. IEEE Transactions on Information Theory, 56(1), 336–349.

    Article  MathSciNet  Google Scholar 

  32. Recher, C., Kieburg, M., & Guhr, T. (2010). Eigenvalue densities of real and complex Wishart correlation matrices. Physical Review Letters, 105, 244101.

    Article  Google Scholar 

  33. Recher, C., Kieburg, M., Guhr, T., & Zirnbauer, M. R. (2012). Supersymmetry approach to Wishart correlation matrices: Exact results. Journal of Statistical Physics, 148(6), 981–998.

    Article  MathSciNet  MATH  Google Scholar 

  34. Ivrlac, M. T., Utschick, W., & Nossek, J. A. (2003). Fading correlations in wireless MIMO communication systems. IEEE Journal on Selected Areas in Communications, 21, 819–828.

    Article  Google Scholar 

  35. Smith, P. J., Roy, S., & Shafi, M. (2003). Capacity of MIMO systems with semicorrelated flat fading. IEEE Transactions on Information Theory, 49(10), 2781–2788.

    Article  MathSciNet  MATH  Google Scholar 

  36. Huang, X.-L., Wu, J., Hu, F., & Chen, H.-H. (2015). Optimal antenna deployment for multiuser MIMO systems based on random matrix theory. IEEE Transactions on Vehicular Technology. doi:10.1109/TVT.2015.2513005.

    Google Scholar 

  37. Wishart, J. (1928). The generalised product moment distribution in samples from a normal multivariate population. Biometrika, 20A, 32–52.

    Article  MATH  Google Scholar 

  38. James, A. T. (1964). Distributions of matrix variates and latent roots derived from normal samples. The Annals of Mathematical Statistics, 35, 475–501.

    Article  MathSciNet  MATH  Google Scholar 

  39. Uhlig, H. (1994). On singular Wishart and singular multivariate beta distributions. The Annals of Statistics, 22, 395–405.

    Article  MathSciNet  MATH  Google Scholar 

  40. Muirhead, R. J. (2009). Aspects of multivariate statistical theory (Vol. 197, p. 218). Hoboken: Wiley.

    Google Scholar 

  41. Anderson, T. W. (2003). An introduction to multivariate statistical analysis (3rd ed., p. 251). Hoboken: Wiley.

    Google Scholar 

  42. Ratnarajah, T., & Vaillancourt, R. (2005). Complex singular matrices and applications. Computers and Mathematics with Applications, 50, 399–411.

    Article  MathSciNet  MATH  Google Scholar 

  43. Cook, R. D. (2011). On the mean and variance of the generalized inverse of a singular Wishart matrix. Electronic Journal of Statistics, 5, 146–158.

    Article  MathSciNet  MATH  Google Scholar 

  44. Nydick, S. W. (2012). The wishart and inverse wishart distributions. Electronic Journal of Statistics, 6, 1–19.

    Article  MathSciNet  Google Scholar 

  45. Wolfram Research Inc. (2013). Mathematica, Version 9.0, Champaign, IL.

  46. Kumar, S., Pivaro, G. F., Fraidenraich, G., & Dias, C. F. (2015). On the exact and approximate eigenvalue distribution for sum of Wishart matrices. arXiv:1504.00222.

  47. Prudnikov, A. A. P., Brychkov, Y. A., Brychkov, I. U. A., & Maričev, O. I. (1990). Integrals and series, Vol. 3: More special functions. London: Gordon and Breach Science Publishers.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Appendices

Proofs for Eqs. (27) and (31)

As pointed out in Sect. 5, the MIMO DAS model and weighted sum of Wishart matrices, both can be mapped to a semicorrelated Wishart scenario. The eigenvalue statistics for weighted sum of Wishart matrices has already been worked out in [46]. As a consequence the proofs in the present case run parallel to those in [46]. However, for the sake of completeness, we reproduce the derivations here as well.

Exact result for the marginal density of eigenvalues for semicorrelated Wishart matrices is available from the notable works of several authors [2733]. We employ here the determinantal expression obtained in [32, 33].

Consider \(n\times m\) dimensional complex matrices W taken from the distribution

$$\begin{aligned} P_\mathbf{W }({\mathbf{W}} )=\pi ^{-mn} \det \!\,^{-m}\hat{\mathbf{V }}\,\exp [-{\text{tr}}({\mathbf{W}} ^\dag \hat{\mathbf{V }}^{-1}{\mathbf{W}} )], \end{aligned}$$
(35)

where the \(n\times n\) dimensional covariance matrix is \(\hat{\mathbf{V }}={\text{diag}}(\hat{v}_1,\ldots ,\hat{v}_n)\). We assumed here that there are no multiplicities in the entries of \(\hat{\mathbf{V }}\), i.e., \(\hat{v}_1,\ldots ,\hat{v}_n\) are distinct. In such a scenario the marginal density of nonzero-eigenvalues of \({\mathbf{W}} {\mathbf{W}} ^\dag\) or \({\mathbf{W}} ^\dag {\mathbf{W}}\) is given by

$$\begin{aligned} p_\lambda (\lambda )=\frac{1}{\nu \Delta _m(\{\hat{v}^{-1}\}) } \det \left[ \begin{array}{ccc} 0 &{} \left[ \frac{\exp (-\lambda /\hat{v}_k)}{\hat{v}_k^m}\right] _{k=1,\ldots ,n} \\ \left[ \frac{\lambda ^{m-j}}{\varGamma (m-j+1)}\right] _{j=1,\ldots ,n} &{} \left[ \hat{v}_k^{-j+1}\right] _{j,k=1,\ldots ,n} \end{array}\right] . \end{aligned}$$
(36)

Here \(\nu =\min (m,n)\), and \(\Delta _m(\{\hat{v}^{-1}\})=\prod _{j>k}(\hat{v}_j^{-1}-\hat{v}_k^{-1})\) is the Vandermonde determinant. Equation (27) follows from (36) by setting \(m=M\) and \(n=\mathsf{L}\) and using the well known result \(\Delta (\{r\})=\det [r_j^{k-1}]\).

We now proceed to derive the ergodic channel capacity using the relation (13). To this end we expand (27) using the first column and obtain

$$\begin{aligned} p_\lambda (\lambda )=c\, \sum _{\mu =1}^{\mathsf{L}}(-1)^{\mu }g_\mu (\lambda )\det \,\left[ \begin{array}{ccc} \left[ f_k(\hat{v},\lambda )\right] _{k=1,\ldots ,L_1+\cdots +L_N} \\ \mathop {{\left[ h_{j,k}(\hat{v})\right] }_{{j,k=1, \ldots ,\mathsf{L}}}}\limits _{{\qquad (j\ne \mu )}}\end{array}\right] . \end{aligned}$$
(37)

We note at this point that \(g_j(\lambda )=\lambda ^{M-j}/\varGamma (M-j+1)=0\) if \(j> M\) because of the diverging gamma function in the denominator. If \(\mathsf{L}\le M\) this situation is not encountered. However, if \(\mathsf{L}> M\) then \(g_j(\lambda )\) is nonzero only for \(1\le j\le M\). Thus in both cases we see that the nonzero terms in the summation in (37) involve \(j=1,\ldots ,\nu\), with \(\nu =\min (M,\mathsf{L})\). We incorporate this observation by changing the upper limit of the summation. We now bring in the \(g_\mu (\lambda )\) occurring before the determinants to the respective first rows, i.e., with \(f_k(\hat{v},\lambda )\), and obtain

$$\begin{aligned} p_\lambda (\lambda )=c\, \sum _{\mu =1}^{\nu }(-1)^{\mu }\det \,\left[ \begin{array}{ccc} \left[ g_\mu (\lambda )f_k(\hat{v},\lambda )\right] _{k=1,\ldots ,\mathsf{L}} \\ \mathop {{\left[ h_{j,k}(\hat{v})\right] }_{{j,k=1,\ldots ,\mathsf{L}}}}\limits _ {{\qquad (j\ne \mu )}}\end{array}\right] . \end{aligned}$$
(38)

This equation serves as yet another expression for the marginal density. We now use (13) and obtain the following expression for the ergodic capacity by interchanging the \(\lambda\)-integral and the summation:

$$\begin{aligned} C=\nu \,c \sum _{\mu =1}^{\nu }(-1)^{\mu } \int _0^\infty d\lambda \, \left( \det \,\left[ \begin{array}{ccc} \left[ g_\mu (\lambda )f_k(\hat{v},\lambda )\right] _{k=1,\ldots ,\mathsf{L}} \\ \mathop {{\left[ h_{j,k}(\hat{v})\right] }_{{j,k=1,\ldots ,\mathsf{L}}}}\limits _ {{\qquad (j\ne \mu )}}\end{array}\right] \right) \, \log _2 \left( 1+\frac{\rho }{M}\lambda \right) . \end{aligned}$$
(39)

The \(\lambda\)-integral can be introduced in the first row of the determinant, along with the term \(\log _2 \left( 1+\frac{\rho }{M}\lambda \right)\) to yield

$$\begin{aligned} C=\nu \,c \sum _{\mu =1}^{\nu }(-1)^{\mu } \det \,\left[ \begin{array}{ccc} \left[ \mathcal{G}_{\mu ,k}(\hat{v})\right] _{k=1,\ldots ,\mathsf{L}} \\ \mathop {{\left[ h_{j,k}(\hat{v})\right] }_{{j,k=1,\ldots ,\mathsf{L}}}}\limits _ {{\qquad (j\ne \mu )}}\end{array}\right] , \end{aligned}$$
(40)

where

$$\begin{aligned} \mathcal{G}_{\mu ,k}(\hat{v})=\int _0^\infty d\lambda \, g_\mu (\lambda )f_k(\hat{v},\lambda )\log _2 \left( 1+\frac{\rho }{M}\lambda \right) . \end{aligned}$$
(41)

This integral can be expressed in a closed form in terms of Meijer G-function or exponential-integral-functions as in (33) and (34), respectively. To obtain (33) we identify the following special cases of Meijer G-functions [47]:

$$\begin{aligned}&G^{1,0}_{0,1} \left( \begin{array}{c} \_ \\ \beta \end{array}\bigg |\, z \right) = z^{\beta }e^{-z}, \end{aligned}$$
(42)
$$\begin{aligned}&\quad G^{1,2}_{2,2} \left( \begin{array}{c} 1,\, 1 \\ 1,\, 0 \end{array}\bigg |\, z \right) = \ln (1+z), \end{aligned}$$
(43)

We also employ the convolution integral for Meijer G-function:

$$\begin{aligned}&\int _0^\infty dz\,G^{m,n}_{p,q} \left( \begin{array}{c} a_1,\,\ldots \, a_p \\ b_1,\,\ldots \, b_q \end{array}\bigg |\, \eta z \right) \, G^{\mu ,\nu }_{\sigma ,\tau } \left( \begin{array}{c} c_1,\,\ldots \, c_\sigma \\ d_1,\,\ldots \, d_\tau \end{array}\bigg |\, \omega z \right) \nonumber \\&\quad =\frac{1}{\eta }\,G^{n+\mu ,m+\nu }_{q+\sigma ,p+\tau } \left( \begin{array}{c} -b_1,\ldots ,-b_m,\,c_1,\,\ldots \, c_\sigma ,\,-b_{m+1},\ldots ,\,-b_q \\ -a_1,\ldots ,-a_n,\,d_1,\,\ldots \, d_\tau ,\,-a_{n+1},\ldots ,\,-a_p \end{array}\Bigg |\, \frac{\omega }{\eta } \right) \nonumber \\&\quad =\frac{1}{\omega }\,G^{m+\nu ,n+\mu }_{p+\tau ,q+\sigma } \left( \begin{array}{c} a_1,\ldots ,a_n,\,-d_1,\,\ldots \, -d_\tau ,\,a_{n+1},\ldots ,\,a_p \\ b_1,\ldots ,b_m,\,-c_1,\,\ldots \, -c_\sigma ,\,b_{m+1},\ldots ,\,b_q \end{array}\Bigg |\,\frac{\eta }{\omega } \right) . \end{aligned}$$
(44)

The restrictions on the indices for this integration formula can be found in [47]. Next we perform row interchanges in the determinants to bring \(\mathcal{G}_{\mu ,k}\) in the respective \(\mu\)th row. Consequently, we have the expression for ergodic channel capacity as provided in (31).

Proofs for Eqs. (15), (20), (24), and (26)

To arrive at Eqs. (24) and (26) we need to set \(\hat{v_1}=\cdots =\hat{v}_{L_1}=v_1; \hat{v}_{L_1+1}=\cdots =\hat{v}_{L_2}=v_2\,;\ldots ; \hat{v}_{L_{(N-1)}+1}=\cdots =\hat{v}_{L_N}=v_N\) in (27) and (31). However, direct substitution of these values makes the determinant in the numerator, as well as the determinant in the denominator (contained in the normalization) to become zero. Therefore, we must invoke a limiting procedure to obtain the proper results, as described below.

Let us focus on the columns involving up to \(L_1\) in (27). The ratio of the determinants appears as

$$\begin{aligned} \frac{\det \left[ \begin{array}{cccccc} 0 &{} (\hat{v}_1^{-1})^M e^{\hat{v}_1^{-1}\lambda } &{} (\hat{v}_2^{-1})^M e^{\hat{v}_2^{-1}\lambda } &{} \ldots &{} (\hat{v}_{L_1}^{-1})^M e^{\hat{v}_{L_1}^{-1}\lambda } &{} \ldots \\ g_j (\lambda ) &{} (\hat{v}_1^{-1})^{j-1} &{} (\hat{v}_2^{-1})^{j-1} &{} \ldots &{} (\hat{v}_{L_1}^{-1})^{j-1} &{} \ldots \end{array}\right] }{\det \left[ \begin{array}{ccccc} (\hat{v}_1^{-1})^{j-1}&(\hat{v}_2^{-1})^{j-1}&\ldots&(\hat{v}_{L_1}^{-1})^{j-1}&\ldots \end{array}\right] } \end{aligned}$$
(45)

We take \(\hat{v}_k^{-1}=\hat{v}_1^{-1}+\epsilon _k\) with small \(\epsilon _k\) for \(k=2,3,\ldots\), and Taylor-expand up to the term \(\epsilon _k^{k-1}\):

$$\begin{aligned} (\hat{v}_k^{-1})^M e^{\hat{v}_k^{-1}\lambda }\approx & {} \sum _{r=0}^{k-1}\frac{\epsilon _k^r}{r!}\frac{\partial ^r}{\partial (\hat{v}_1^{-1})^r} (\hat{v}_1^{-1})^M e^{\hat{v}_1^{-1}\lambda };\\ (\hat{v}_k^{-1})^{j-1}\approx & {} \sum _{r=0}^{k-1}\frac{\epsilon _k^r}{r!}\frac{\partial ^r}{\partial (\hat{v}_1^{-1})^r} (\hat{v}_1^{-1})^{j-1}. \end{aligned}$$

Now, employing adequate column operations, we obtain

$$\begin{aligned} \frac{\det \,\left[ \begin{array}{cccccc} 0 &{} (\hat{v}_1^{-1})^M e^{\hat{v}_1^{-1}\lambda } &{} \frac{\epsilon _k}{1!}\frac{\partial }{\partial (\hat{v}_1^{-1})} (\hat{v}_1^{-1})^M e^{\hat{v}_1^{-1}\lambda } &{} \ldots &{} \frac{\epsilon _k^{k-1}}{(k-1)!}\frac{\partial ^{k-1}}{\partial (\hat{v}_1^{-1})^{k-1}} (\hat{v}_1^{-1})^M e^{\hat{v}_1^{-1}\lambda } &{} \ldots \\ g_j (\lambda ) &{} (\hat{v}_1^{-1})^{j-1} &{}\frac{\epsilon _k}{1!}\frac{\partial }{\partial (\hat{v}_1^{-1})} (\hat{v}_1^{-1})^{j-1} &{} \ldots &{} \frac{\epsilon _k^{k-1}}{(k-1)!}\frac{\partial ^{k-1}}{\partial (\hat{v}_1^{-1})^{k-1}}(\hat{v}_1^{-1})^{j-1} &{} \ldots \end{array}\right] }{\det \,\left[ \begin{array}{ccccc} (\hat{v}_1^{-1})^{j-1}&\frac{\epsilon _k}{1!}\frac{\partial }{\partial (\hat{v}_1^{-1})} (\hat{v}_1^{-1})^{j-1}&\ldots&\frac{\epsilon _k^{k-1}}{(k-1)!}\frac{\partial ^{k-1}}{\partial (\hat{v}_1^{-1})^{k-1}}(\hat{v}_1^{-1})^{j-1}&\ldots \end{array}\right] } \end{aligned}$$
(46)

The factors containing \(\epsilon _k\) and factorial can be taken out of the columns, both from numerator and denominator, and cancelled out. This leaves us with

$$\begin{aligned} \frac{\det \,\left[ \begin{array}{cccccc} 0 &{} (\hat{v}_1^{-1})^M e^{\hat{v}_1^{-1}\lambda } &{} \frac{\partial }{\partial (\hat{v}_1^{-1})} (\hat{v}_k^{-1})^M e^{\hat{v}_1^{-1}\lambda } &{} \ldots &{} \frac{\partial ^{k-1}}{\partial (\hat{v}_1^{-1})^{k-1}} (\hat{v}_k^{-1})^M e^{\hat{v}_1^{-1}\lambda } &{} \ldots \\ g_j (\lambda ) &{} (\hat{v}_1^{-1})^{j-1} &{}\frac{\partial }{\partial (\hat{v}_1^{-1})} (\hat{v}_1^{-1})^{j-1} &{} \ldots &{} \frac{\partial ^{k-1}}{\partial (\hat{v}_1^{-1})^{k-1}}(\hat{v}_1^{-1})^{j-1} &{} \ldots \end{array}\right] }{\det \,\left[ \begin{array}{ccccc} (\hat{v}_1^{-1})^{j-1}&\frac{\partial }{\partial (\hat{v}_1^{-1})} (\hat{v}_1^{-1})^{j-1}&\ldots&\frac{\partial ^{k-1}}{\partial (\hat{v}_1^{-1})^{k-1}}(\hat{v}_1^{-1})^{j-1}&\ldots \end{array}\right] } \end{aligned}$$
(47)

To evaluate the derivatives of \((\hat{v}_k^{-1})^M e^{\hat{v}_1^{-1}\lambda }\) we use Rodrigues’ formula for the associated Laguerre polynomials,

$$\begin{aligned} \mathcal{L}_k^{(\beta )}(z)=\frac{z^{-\beta } e^z }{k!}\frac{\partial ^k}{\partial z^k}\left( z^{k+\beta } e^{-z} \right) , \end{aligned}$$
(48)

with adequate scaling of the variables. Similar steps are followed for rest of the columns and consequently we arrive at (24).

We employ a similar procedure in (31) to arrive at (26). To evaluate the derivative of Meijer G-function we use the result

$$\begin{aligned} z^r \frac{\partial ^r}{\partial z^r} G^{3,1}_{2,3} \left( \begin{array}{c} a_1,\, a_2 \\ b_1,\, b_2,\, b_3 \end{array}\Bigg |\, z \right) = G^{3,2}_{3,4} \left( \begin{array}{c} 0,\, a_1,\, a_2 \\ b_1,\, b_2,\, b_3,\, r \end{array}\Bigg |\, z \right) , \end{aligned}$$
(49)

which follows from the following more general expression [47]:

$$\begin{aligned} z^r \frac{\partial ^r}{\partial z^r}G^{m,n}_{p,q} \left( \begin{array}{c} a_1,\, \ldots ,\, a_p \\ b_1,\,\ldots ,\, b_q \end{array}\bigg |\, z \right) = G^{m,n+1}_{p+1,q+1}\left( \begin{array}{c} 0,\,a_1,\, \ldots ,\, a_p \\ b_1,\,\ldots ,\, b_q,\,r \end{array}\bigg |\, z \right) . \end{aligned}$$
(50)

Finally, (15) and (20) follow trivially from, respectively, (24) and (26) by setting identical number of antennas at each port, i.e., \(L_1=\cdots =L_N=L\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S. On the Ergodic Capacity of Distributed MIMO Antenna Systems. Wireless Pers Commun 92, 381–397 (2017). https://doi.org/10.1007/s11277-016-3548-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3548-6

Keywords

Navigation