Skip to main content
Log in

Certificateless Signcryption in the Standard Model

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Signcryption can realize encryption and signature simultaneously with lower computational costs and communicational overheads than those of the traditional sign-then-encrypt approach. Certificateless cryptosystem solves the key escrow problem in the identity-based cryptosystem and simplifies the public key management in the traditional public key cryptosystem. There have been some certificateless signcryption schemes proposed in the standard model up to now, but all of them are just proposed in a weaker Type I security model, which is weaker than the original security model of Barbosa and Farshim, who proposed the first certificateless signcryption scheme. In this paper, we propose a certificateless signcryption scheme in the standard model by using bilinear pairings, which is Type I secure in the original security model of Barbosa and Farshim and can resist the malicious-but-passive key generation center Type II attack. The proposed scheme is proved confidential assuming the modified decisional bilinear Diffie–Hellman (M-DBDH) problem is hard, and unforgeable assuming the square computational Diffie–Hellman (Squ-CDH) problem is hard. At last, we evaluate its efficiency which shows it is of high efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shamir, A. (1984). Identity-based cryptosystems and signature schemes. In CRYPTO’84. lecture notes in computer science (vol. 196, pp. 47–53). Heidelberg: Springer.

  2. Al-Riyami, S. S., & Paterson, K. G. (2003). Certificateless public key cryptography. In Proceedings of ASIACRYPT 2003. Lecture notes in computer science (vol. 2894, pp. 452–473). Heidelberg: Springer.

  3. Zheng, Y. L. (1997). Digital signcryption or how to achieve cost (signature & encryption) \(<<\) cost (signature) + cost (encryption). In CRYPTO’97. Lecture notes in computer science (vol. 1294, pp.165-179). Heidelberg: Springer.

  4. Barbosa, M., & Farshim, P. (2008). Certificateless signcryption. In Proceedings of ASIACCS’2008 (pp. 369–372). New York: ACM.

  5. Li, F. G., Shirase, M., & Takagi, T. (2013). Certificateless hybrid signcryption. Mathematical and Computer Modelling, 57(3), 324–343.

    Article  MathSciNet  MATH  Google Scholar 

  6. Zhou, C. X., Zhou, W., & Dong, X. W. (2014). Provable certificateless generalized signcryption scheme. Designs, Codes and Cryptography, 71(2), 331–346.

    Article  MathSciNet  MATH  Google Scholar 

  7. Shi, W. B., Kumar, N., Gong, P., & Zhang, Z. Z. (2014). Cryptanalysis and improvement of a certificateless signcryption scheme without bilinear pairing. Frontiers of Computer Science, 8(4), 656–666.

    Article  MathSciNet  MATH  Google Scholar 

  8. Canetti, R., Goldreich, O., & Halevi, S. (2004). The random oracle methodology, revisited. Journal of the ACM, 51(4), 557–594.

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, Z. H., Hu, Y. P., Zhang, X. S., & Ma, H. (2010). Certificateless signcryption scheme in the standard model. Information Sciences, 180(3), 452–464.

    Article  MathSciNet  MATH  Google Scholar 

  10. Selvi, S. S. D., Vivek, S. S., & Rangan, C. P. (2010). Security weaknesses in two certificateless signcryption schemes. In IACR Cryptology ePrint Archive, http://eprint.iacr.org/2010/092

  11. Jin, Z. P., Wen, Q. Y., & Zhang, H. (2010). A supplement to Liu et al.’s certificateless signcryption scheme in the standard model. In IACR ePrint Archive, http://eprint.iacr.org/2010/252

  12. Weng, J., Yao, G. X., Deng, R. H., Chen, M. R., & Li, X. X. (2011). Cryptanalysis of a certificateless signcryption scheme in the standard model. Information Sciences, 181(3), 661–667.

    Article  MathSciNet  MATH  Google Scholar 

  13. Miao, S. Q., Zhang, F. T., Li, S. J., & Mu, Y. (2013). On security of a certificateless signcryption scheme. Information Sciences, 232, 475–481.

    Article  MathSciNet  MATH  Google Scholar 

  14. Xiong, H. (2014). Toward certificateless signcryption scheme without random oracle. In IACR ePrint archive, http://eprint.iacr.org/2014/162

  15. Cheng, L., & Wen, Q. Y. (2015). An improved certificateless signcryption in the standard model. International Journal of Network Security, 17(5), 597–606.

    Google Scholar 

  16. Au, M. H., Chen, J., Liu, J. K., Mu, Y., Wong, D. S., & Yang, G. M. (2007). Malicious KGC attacks in certificateless cryptography. In Proceedings of ASIACCS’2007 (pp. 302–311). New York: ACM.

  17. Wang, H., Zhang, Y., Xiong, H., & Qin, B. (2012). Cryptanalysis and improvements of an anonymous multi-receiver identity-based encryption scheme. IET Information Security, 6(1), 20–27.

    Article  Google Scholar 

  18. Yuan, Y. M., & Wang, C. H. (2014). Certificateless signature scheme with security enhanced in the standard model. Information Processing Letters, 114(9), 492–499.

    Article  MathSciNet  MATH  Google Scholar 

  19. Waters, B. (2005). Efficient identity-based encryption without random oracles. In EUROCRYPT 2005. Lecture notes in computer science (vol. 3494, pp.114–127). Heidelberg: Springer.

  20. Paterson, K. G., & Schuldt, J. C. N. (2006). Efficient identity-based signatures secure in the standard model. In IACR ePrint Archive, http://eprint.iacr.org/2006/080

  21. Chen, L., Cheng, Z., & Smart, N. P. (2007). Identity-based key agreement protocols from pairings. International Journal of Information Security, 6(4), 213–241.

    Article  Google Scholar 

Download references

Acknowledgments

We would like to present our thanks to anonymous reviewers for their helpful suggestions in improving the presentation of our results, and Ms. Yan Di in English langusge editing. This work was supported by the National Natural Science Foundation of China (Grant Nos. 61462048, 61362032 and 61562047); the Natural Science Foundation of Jiangxi Province, China (Grant No. 20151BAB207003 and 20161BAB202036), and the key program of JiuJiang University (Grant No. 2013ZD02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caixue Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, C., Gao, G. & Cui, Z. Certificateless Signcryption in the Standard Model. Wireless Pers Commun 92, 495–513 (2017). https://doi.org/10.1007/s11277-016-3554-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3554-8

Keywords

Mathematics Subject Classification

Navigation