Skip to main content
Log in

Joint Relay and Antenna Selection in MIMO PLNC Inter-vehicular Communication Systems over Cascaded Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We investigate the joint relay and antenna selection performance in a multiple input multiple output (MIMO) Vehicle-to-Vehicle (V2V) communication system employing physical layer network coding (PLNC) with amplify-and-forward (AF) scheme at the relay antenna. Analytic results are derived under the cascaded Nakagami-m fading channel model assumption, which covers cascaded Rayleigh and conventional cellular channel models as well. We evaluate the performance of the system in terms of joint outage probability of sources and derive closed-form expressions for lower and upper bounds while an exact expression is found as a single integral form. Besides, the asymptotic diversity order is analyzed and quantified as a function of number of relays and antennas installed on the source and relay vehicles, and channel parameters. Finally, we verify the analytic derivations by computer simulations. Our results show that the outage probability performance decreases with the increasing cascading degrees of the channels but joint relay and antenna selection enhances the performance of the system superbly with the increasing number of relays and antennas. Also it is shown throughout all the simulation results, the lower bound for the joint outage probability seems to consistently be well tight for large SNR. Therefore it can be used for practical design of inter-vehicular communication systems which contain multiple relays and antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Molisch, A. F., Tufvesson, F., Karedal, J., & Mecklenbrauker, C. F. (2009). A survey on vehicle-to-vehicle propagation channels. IEEE Transactions on Wireless Communications, 16, 12–22.

    Article  Google Scholar 

  2. Sen, I., & Matolak, D. W. (2008). Vehicle-vehicle channel models for the 5 GHz band. IEEE Transactions on Intelligent Transportation Systems, 9, 235–245.

    Article  Google Scholar 

  3. Wang, C. X., Cheng, X., & Laurenson, D. I. (2009). Vehicle-to-vehicle channel modeling and measurements: Recent advances and future challenges. IEEE Communications Magazine, 47, 96–103.

    Article  Google Scholar 

  4. Andersen, J. B. (2002). Statistical distributions in mobile communications using multiple scattering. In 27th URSI general assembly, Netherlands.

  5. Salo, J., El-Sallabi, H., & Vainikainen, P. (2006). Statistical analysis of the multiple scattering radio channel. IEEE Transactions on Antennas and Propagation, 54, 3114–3124.

    Article  MathSciNet  Google Scholar 

  6. Shin, H., & Win, M. (2008). MIMO diversity in the presence of double scattering. IEEE Transactions on Information Theory, 54, 2976–2996.

    Article  MathSciNet  MATH  Google Scholar 

  7. Uysal, M. (2005). Maximum achievable diversity order for cascaded Rayleigh fading channels. IET Electronic Letters, 41, 43–44.

    Article  Google Scholar 

  8. Salo, J., El-Sallabi, H., & Vainikainen, P. (2006). The distribution of the product of independent Rayleigh random variables. IEEE Transactions on Antennas and Propagation, 54, 639–643.

    Article  MathSciNet  Google Scholar 

  9. Shin, H., & Lee, J. H. (2004). Performance analysis of space-time block codes over keyhole Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 53, 351–362.

    Article  Google Scholar 

  10. Zlatanov, N., Hadzi-Velkov, Z., & Karagiannidis, G. (2008). Level crossing rate and average fade duration of the double Nakagami-m random process and application in MIMO keyhole fading channels. IEEE Communications Letters, 12, 822–824.

    Article  Google Scholar 

  11. Karagiannidis, G., Sagias, N., & Mathiopoulos, P. (2007). N*Nakagami: A novel stochastic model for cascaded fading channels. IEEE Transactions on Communications, 55, 1453–1458.

    Article  Google Scholar 

  12. Shankar, P. M. (2011). Statistical models for fading and shadowed fading channels in wireless systems: A pedagogical perspective. Wireless Personal Communications, 60, 191–213.

    Article  Google Scholar 

  13. Sen, I., & Matolak, D. W. (2008). Vehicle-vehicle channel models for the 5 GHz band. IEEE Transactions on Intelligent Transportation Systems, 9, 235–245.

    Article  Google Scholar 

  14. Trigui, I., Laourine, A., Affes, S., & Tephen, A. (2009). On the performance of cascaded Generalized K fading channels. IEEE GLOBECOM, pp. 1–5, Honolulu, Dec 2009.

  15. Sagias, N., & Tombras, G. (2007). On the cascaded Weibull fading channel model. Journal of the Franklin Institute, 344, 1–11.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity-part I: System description. IEEE Transactions on Communications, 51, 1927–1938.

    Article  Google Scholar 

  17. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50, 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  18. Sendonaris, A., Erkip, E., & Aazhang, B. (1998). Increasing uplink capacity via user cooperation diversity. In IEEE international symposium on information theory, p. 156, Cambridge.

  19. Emamian, V., & Kaveh, M. (2001). Combating shadowing effects for systems with transmitter diversity by using collaboration among mobile users. In Proceedings of international symposium on communications, Taiwan, Nov 2001, pp. 1051–1054.

  20. Hasna, M. O., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Transactions on Wireless Communications, 2, 1126–1131.

    Article  Google Scholar 

  21. Hasna, M. O., & Alouini, M. S. (2004). A performance study of dual hope transmissions with fixed gain relays. IEEE Transactions on Wireless Communications, 3, 1963–1968.

    Article  Google Scholar 

  22. Telatar, E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10, 585–595.

    Article  Google Scholar 

  23. Foschini, G., & Gans, M. (1998). On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Communications, 6, 311–335.

    Article  Google Scholar 

  24. Rentapalli, V. R., & Khan, Z. J. (2011). MIMO and smart antenna technologies for 3G and 4G. Communications in Computer and Information Science, 147, 493–498.

    Article  Google Scholar 

  25. El-Mashed, M. G., & El-Rabaie, S. (2015). Service enhancement for user equipments in LTE-A downlink physical layer network. Wireless Personal Communications, 83, 149–161.

    Article  Google Scholar 

  26. Agustin, A., & Vidal, J. (2008). Amplify-and-forward cooperation under interference-limited spatial reuse of the relay slots. IEEE Transactions on Wireless Communications, 7, 1952–1962.

    Article  Google Scholar 

  27. Peters, S. W., & Heath, R. W. (2008). Nongenerative MIMO relaying with optimal transmit antenna selection. IEEE Signal Processing Letters, 15, 421–424.

    Article  Google Scholar 

  28. Gorokhov, A. (2003). Receive antenna selection for MIMO spatial multiplexing: Theory and algorithms. IEEE Transactions on Signal Processing, 51, 2796–2807.

    Article  MathSciNet  Google Scholar 

  29. Amarasuriya, G., Tellambbura, C., & Ardakani, M. (2012). Joint relay and antenna selection for dual-hop amplify-and-forward MIMO relay networks. IEEE Transactions on Wireless Communications, 11, 493–499.

    Article  Google Scholar 

  30. Ju, M., Song, H. K., & Kim, I. M. (2010). Joint relay-and-antenna selection in multi-antenna relay networks. IEEE Transactions on Communications, 58, 3417–3422.

    Article  Google Scholar 

  31. Zhang, S., Liew, S. C., & Lam, P. (2006). Hot topic: Physical layer network coding, MobiCom’06. In 12th international conference on mobile computing, pp. 358–365, Los Angeles, Sep 2006.

  32. Song, L. (2011). Relay selection for two-way relaying with amplify-and-forward protocols. IEEE Transactions on Vehicular Technology, 60, 1954–1959.

    Article  Google Scholar 

  33. Yang, Y., Ge, J., & Gao, Y. (2011). Power allocation for two-way opportunistic amplify-and-forward relaying over Nakagami-m channels. The IEEE Transactions on Wireless Communications, 10, 2063–2068.

    Article  Google Scholar 

  34. Han, B., Wang, W., Zhao, Z., & Peng, M. (2014). Nth best relay selection with network coding in two-way relay systems. International Journal of Communication Systems, 27, 763–775.

    Article  Google Scholar 

  35. Amarasuriya, G., Tellambura, C., & Ardakani, M. (2012). Two-way amplify-and-forward multiple-input multiple-output relay networks with antenna selection. IEEE Journal on Selected Areas, 30, 1513–1529.

    Article  Google Scholar 

  36. Huang, M., & Yuan, J. (2014). Error performance of physical-layer network coding in multiple-antenna TWRC. IEEE Transactions on Vehicular Technology, 63, 3750–3761.

    Article  Google Scholar 

  37. Guo, H., Ge, J., & Ding, H. (2011). Symbol error probability of two-way amplify-and-forward relaying. IEEE Communications Letters, 15, 22–24.

    Article  Google Scholar 

  38. Yang, K., Yang, N., Xing, C., & Wu, J. (2014). Relay antenna selection in MIMO two-way relay networks over Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 63, 2349–2362.

    Article  Google Scholar 

  39. Yang, N., Yeoh, P. L., Elkashlan, M., Collings, I. B., & Chen, Z. (2012). Two-way relaying with multi-antenna sources: Beamforming and antenna selection. IEEE Transactions on Vehicular Technology, 61, 3996–4008.

    Article  Google Scholar 

  40. Ilhan, H. (2012). Performance analysis of two-way AF relaying systems over cascaded Nakagami-m fading channels. IEEE Signal Processing Letters, 19, 332–335.

    Article  Google Scholar 

  41. Zhang, C., Ge, J., Li, J., & Hu, Y. (2013). Performance analysis for mobile-relay-based M2M two-way AF relaying in N*Nakagami-m fading. Electronics Letters, 49, 344–346.

    Article  Google Scholar 

  42. Yadav, S., & Upadhyay, P. K. (2013). Performance analysis of two-way AF relaying systems over cascaded generalized-K fading channels. In National conference on communications, pp. 1–5. New Delhi, Feb 2013.

  43. Wang, X., Zhang, H., Gulliver, T. A., Shi, W., & Zhang, H. (2013). Performance analysis of two-way AF cooperative relay networks over weibull fading channels. Journal of Communications, 8, 372–377.

    Article  Google Scholar 

  44. Shakeri, R., Khakzad, H., Taherpour, A., & Gazor, S. (2014) Performance of two-way multi-relay inter-vehicular cooperative networks. In IEEE wireless communications and networking coding conference, pp. 520–525, Istanbul, Apr 2014.

  45. Shirkhani, M., Tirkan, Z., & Taherpour, A. (2012). Performance analysis and optimization of two-way cooperative communications in inter-vehicular networks, In Wireless communications, signal processing and signal proceeding conference, pp. 1–6, Huangshan, Oct 2012.

  46. Ilhan, H. (2014). Relay-selection in two-way cooperative systems. Wireless Personal Communications, 77, 1329–1341.

    Article  Google Scholar 

  47. Ata, S. O., & Altunbas, I. (2015). Relay antenna selection for V2V communications using PLNC over cascaded fading channels. In IEEE international wireless communications and mobile computing conference 11th IWCMC, pp. 1336–1340, Croatia, Aug 2015.

  48. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). Elsevier Inc: Amsterdam.

    MATH  Google Scholar 

  49. Tse, D. N. C., Viswanath, P., & Zheng, L. (2004). Diversity-multiplexing trade-off in multiple-access channels. IEEE Transactions on Information Theory, 50(9), 1859–1874.

    Article  MathSciNet  MATH  Google Scholar 

  50. Wolfram Research, Inc. The Wolfram functions site. http://functions.wolfram.com.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Ata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ata, S.O., Altunbas, I. Joint Relay and Antenna Selection in MIMO PLNC Inter-vehicular Communication Systems over Cascaded Fading Channels. Wireless Pers Commun 92, 901–923 (2017). https://doi.org/10.1007/s11277-016-3584-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3584-2

Keywords

Navigation