Skip to main content
Log in

Wireless Sensor Networks Localization Using Progressive Isomap

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes a progressive Isomap algorithm for node localization. The algorithm is an extension of centralized Isomap and is capable of effectively localizing new nodes progressively, without neglecting preceding computational results. In the initial startup phase, sensor nodes within two hop range of three non-collinear anchor nodes are localized using range (\(\epsilon\))-Isomap. Afterwards, in the progressive phase, the remaining nodes are localized in a sequential manner, using recently localized nodes. The localization process initiated at different nodes in the network give rise to the overlapping substructures of localized nodes. The overlapped substructures are stitched to form a single coordinate system. Finally, Helmert Transformation is used to obtain the global coordinates of the nodes. The effects of varying various parameters on the accuracy and scalability of the proposed algorithm are studied through the simulation. Results indicate that the proposed algorithm has good positioning accuracy and noise-robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mao, G., Fidan, B., & Anderson, B. D. (2007). Localization. In N. P. Mahalik (Ed.), Sensor networks and configuration: Fundamentals, standards, platforms and applications (pp. 281–315). Berlin: Springer. doi:10.1007/3-540-37366-7.

    Google Scholar 

  2. Savvides, A., Han, C. C., & Strivastava, M. B. (2001). Dynamic fine-grained localization in ad-hoc networks of sensors. In Proceedings of the 7th ACM international conference on mobile computing and networking (MOBICOM’01) (pp. 166–179). doi:10.1145/381677.381693.

  3. Chan, H., Luk, M., & Perrig, A. (2005). Using clustering information for sensor network localization. In Proceedings of the 1st IEEE international conference on distributed computing in sensor systems (DCOSS’05) (pp. 109–125). doi:10.1007/11502593_11.

  4. Rashid, H., & Turuk, A. K. (2013). Localization of wireless sensor networks using a single anchor node. Wireless Personal Communications, 72(2), 975–986. doi:10.1007/s11277-013-1050-y.

    Article  Google Scholar 

  5. Zhang, Y., Chen, Y., & Liu, Y. (2012). Towards unique and anchor-free localization for wireless sensor networks. Wireless Personal Communications, 63(1), 261–278. doi:10.1007/s11277-011-0337-0.

    Article  Google Scholar 

  6. Shen, S., Yang, B., Qian, K., & Jiang, X. (2015). An efficient localization algorithm in wireless sensor networks. In Proceedings of the 3rd IEEE international symposium on computing and networking (CANDAR) (pp. 291–294). doi:10.1109/CANDAR.2015.99.

  7. Priyantha, N. B., Balakrishnan, H., Demaine, E., & Teller, S. (2003). Anchor-free distributed localization in sensor networks. In Proceedings of the 1st ACM international conference on embedded networked sensor systems (pp. 340–341). doi:10.1145/958491.958550.

  8. Wang, D., Yang, L., & Cheng, X. (2016). A low-complexity cooperative algorithm for robust localization in wireless sensor networks. In International conference on computing, networking and communications (ICNC) (pp. 1–5). doi:10.1109/ICCNC.2016.7440715.

  9. Schlupkothen, S., Dartmann, G., & Ascheid, G. (2015). A novel low-complexity numerical localization method for dynamic wireless sensor networks. IEEE Transactions on Signal Processing, 63(15), 4102–4114. doi:10.1109/TSP.2015.2422685.

    Article  MathSciNet  Google Scholar 

  10. Rabaey, C. S. J., & Langendoen, K. (2002). Robust positioning algorithms for distributed ad-hoc wireless sensor networks. In Proceedings of the general track of the annual conference on USENIX annual technical conference (ATEC ‘02) (pp. 317–327).

  11. Zhang, Y., Wu, W., & Chen, Y. (2005). A range-based localization algorithm for wireless sensor networks. Journal of Communications and Networks, 7(4), 429–437. doi:10.1109/JCN.2005.6387985.

    Article  Google Scholar 

  12. Tomic, S., & Mezei, I. (2016). Improvements of DV-Hop localization algorithm for wireless sensor networks. Telecommunication Systems, 61(1), 93–106. doi:10.1007/s11235-015-0014-9.

    Article  Google Scholar 

  13. He, T., Huang, C., Blum, B. M., Stankovic, J. A., & Abdelzaher, T. (2003). Range-free localization schemes for large scale sensor networks. In Proceedings of the 9th annual international conference on mobile computing and networking (MobiCom’03) (pp. 81–95). doi:10.1145/938985.938995.

  14. Liang, C., & Wen, F. (2016). Received signal strength based robust cooperative localization with dynamic path loss model. IEEE Sensors Journal, 16(5), 1265–1270. doi:10.1109/JSEN.2015.2500270.

    Article  Google Scholar 

  15. Rencheng, J., Hongbin, W., Bo, P., & Ning, G. (2008). Research on RSSI-based localization in wireless sensor networks. In Proceedings of the 4th IEEE international conference on wireless communications, networking and mobile computing (WiCOM’08) (pp. 1–4). doi:10.1109/WiCom.2008.963.

  16. Kalpana, R., & Baskaran, M. (2016). TAR: TOA–AOA based random transmission directed localization. Wireless Personal Communications. doi:10.1007/s11277-016-3237-5.

    Google Scholar 

  17. Niculescu, D., & Nath, B. (2003). Ad hoc positioning system (APS) using AOA. In Proceedings of the 22nd annual joint conference of the ieee computer and communications societies (Vol. 3, pp. 1734–1743).

  18. Xu, B., Sun, G., Yu, R., & Yang, Z. (2013). High-accuracy TDOA-based localization without time synchronization. IEEE Transactions on Parallel and Distributed Systems, 24(8), 1567–1576. doi:10.1109/TPDS.2012.248.

    Article  Google Scholar 

  19. Shang, Y., Ruml, W., Zhang, Y., & Fromherz, M. P. (2003). Localization from mere connectivity. In Proceedings of the 4th ACM international symposium on mobile ad hoc networking & computing (MobiHoc’03) (pp. 201–212). doi:10.1145/778415.778439.

  20. Franceschini, F., Galetto, M., Maisano, D., & Mastrogiacomo, L. (2009). A review of localization algorithms for distributed wireless sensor networks in manufacturing. International Journal of Computer Integrated Manufacturing, 22(7), 698–716. doi:10.1080/09511920601182217.

    Article  Google Scholar 

  21. Gezici, S. (2008). A survey on wireless position estimation. Wireless Personal Communications, 44(3), 263–282. doi:10.1007/s11277-007-9375-z.

    Article  Google Scholar 

  22. Ji, X., & Zha, H. (2004). Sensor positioning in wireless ad-hoc sensor networks using multidimensional scaling. In Proceedings of the 23rd annual joint conference of the IEEE computer and communications societies (INFOCOM’04) (Vol. 4, pp. 2652–2661). doi:10.1109/infcom.2004.1354684.

  23. Patwari, N., & Hero III, A. O. (2004). Manifold learning algorithms for localization in wireless sensor networks. In Proceedings of the IEEE international conference on acoustics, speech, and signal processing (ICASSP’04) (Vol. 3, pp. iii-857). doi:10.1109/ICASSP.2004.1326680.

  24. Shi, L. K., He, P. L., Liu, B., Fu, K., & Wu, Q. (2005). A robust generalization of Isomap for new data. In Proceedings of IEEE international conference on machine learning and cybernetics (ICMLC’05) (Vol. 3, pp. 1707–1712). doi:10.1109/ICMLC.2005.1527219.

  25. Zhang, Z., Wang, J., & Zha, H. (2012). Adaptive manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(2), 253–265. doi:10.1109/TPAMI.2011.115.

    Article  Google Scholar 

  26. Saul, L. K., & Roweis, S. T. (2003). Think globally, fit locally: Unsupervised learning of low dimensional manifolds. The Journal of Machine Learning Research, 4, 119–155. doi:10.1162/153244304322972667.

    MathSciNet  MATH  Google Scholar 

  27. Jolliffe, I. T. (2002). Principal component analysis. New York: Springer. doi:10.1007/b98835.

    MATH  Google Scholar 

  28. Cox, T. F., & Cox, M. A. (Eds.). (2000). Multidimensional scaling (2nd ed.). London/Boca Raton: Chapman & Hall/CRC. doi:10.1201/9781420036121.

    MATH  Google Scholar 

  29. Tenenbaum, J. B., De Silva, V., & Langford, J. C. (2000). A global geometric framework for nonlinear dimensionality reduction. Science, 290(5500), 2319–2323. doi:10.1126/science.290.5500.2319.

    Article  Google Scholar 

  30. Roweis, S. T., & Saul, L. K. (2000). Nonlinear dimensionality reduction by locally linear embedding. Science, 290(5500), 2323–2326. doi:10.1126/science.290.5500.2323.

    Article  Google Scholar 

  31. Wang, C., Chen, J., Sun, Y., & Shen, X. S. (2009). Wireless sensor networks localization with Isomap. In Proceedings of the IEEE international conference on communications (ICC’09) (pp. 1–5). doi:10.1109/icc.2009.5199576.

  32. Bengio, Y., Paiement, J. F., Vincent, P., Delalleau, O., Le Roux, N., & Ouimet, M. (2004). Out-of-sample extensions for lle, isomap, mds, eigenmaps, and spectral clustering. Advances in Neural Information Processing Systems, 16, 177–184.

    Google Scholar 

  33. Law, M. H., & Jain, A. K. (2006). Incremental nonlinear dimensionality reduction by manifold learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(3), 377–391. doi:10.1109/TPAMI.2006.56.

    Article  Google Scholar 

  34. Zhao, D., & Yang, L. (2009). Incremental isometric embedding of high-dimensional data using connected neighborhood graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(1), 86–98. doi:10.1109/TPAMI.2008.34.

    Article  Google Scholar 

  35. Zhang, Y., Wang, Y., Li, C., & Wang, K. (2008). Kernel based incremental learning Isomap algorithm. In IEEE international conference on information and automation (ICIA’08) (pp. 184–189). doi:10.1109/icinfa.2008.4607993.

  36. Mao, G., Fidan, B., & Anderson, B. D. (2007). Wireless sensor network localization techniques. Computer Networks, 51(10), 2529–2553. doi:10.1016/j.comnet.2006.11.018.

    Article  MATH  Google Scholar 

  37. Shang, Y., Shi, H., & Ahmed, A. (2004). Performance study of localization methods for ad-hoc sensor networks. In Proceedings of the 1st IEEE international conference on mobile ad hoc and sensor systems (MASS’04) (pp. 184–193). doi:10.1109/MAHSS.2004.1392106.

  38. Li, B., He, Y., Guo, F., & Zuo, L. (2013). A novel localization algorithm based on Isomap and partial least squares for wireless sensor networks. IEEE Transactions on Instrumentation and Measurement, 62(2), 304–314. doi:10.1109/TIM.2012.2216476.

    Article  Google Scholar 

  39. Meertens, L., & Fitzpatrick, S. (2004). The distributed construction of a global coordinate system in a network of static computational nodes from inter-node distances. Kestrel Institute Technical Report KES.U.04.04. Retrieved from https://www.kestrel.edu/home/people/fitzpatrick/pub/KES.U.04.04.pdf.

  40. Horn, B. K. (1987). Closed-form solution of absolute orientation using unit quaternions. JOSA A, 4(4), 629–642. doi:10.1364/JOSAA.4.000629.

    Article  Google Scholar 

  41. Bachrach, J., & Taylor, C. (2005). Localization in sensor networks. In I. Stojmenovic (Ed.), Handbook of sensor networks: Algorithms and architectures (pp. 277–310). New Jersey: Wiley. doi:10.1002/047174414x.ch9.

    Chapter  Google Scholar 

  42. Alikhani, S., Kunz, T., & St-Hilaire, M. (2010). iCCA-MAP versus MCL and dual MCL: Comparison of mobile node localization algorithms. In Ad-Hoc, mobile and wireless networks (pp. 163–176). Berlin: Springer. doi:10.1007/978-3-642-14785-2_13.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Kashniyal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashniyal, J., Verma, S. & Singh, K.P. Wireless Sensor Networks Localization Using Progressive Isomap. Wireless Pers Commun 92, 1281–1302 (2017). https://doi.org/10.1007/s11277-016-3606-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3606-0

Keywords

Navigation