Skip to main content
Log in

A Novel Cooperative Diversity Technique Based on Multilevel Pseudo Space–Time Trellis Coding

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Several multilevel space–time trellis coding (MLSTTC) techniques have been investigated in the past few years to attain the benefits of spectral efficiency, coding gain and diversity gain. However, these techniques require multiple transmit antennas for their operation and cannot be used for mobile nodes with size, cost or hardware constraint. This study proposes a cooperative transmission technique for single-antenna mobile nodes using novel multilevel pseudo space–time trellis coding (MLPSTTC). Each mobile node behave as a cooperating node and decodes the information transmitted by other mobile nodes to the common destination node. The self-information of a cooperating node and decoded information of other nodes is further encoded using multilevel coding scheme with pseudo space–time trellis codes as component codes. The resultant MLPSTTC symbols generated at each cooperating node are transmitted to the common destination node through independent fading channels. Thus, the destination node receives multiple copies of information of each mobile node. The received coded signal at the destination node is passed through a multistage Viterbi decoder to detect the information of each mobile node. The performance of proposed cooperative multilevel pseudo space–time trellis coding technique is superior to most of the existing MLSTTC techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sendonaris, A. (1999). Advanced techniques for next-generation wireless systems. PhD thesis, Rice University, Texas.

  2. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  3. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part II. Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.

    Article  Google Scholar 

  4. Janani, M., Hedayat, A., Hunter, T. E., & Nosratinia, A. (2004). Coded cooperation in wireless communications: Space–time transmission and iterative decoding. IEEE Transactions on Signal Processing, 52(2), 362–371.

    Article  MathSciNet  Google Scholar 

  5. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  6. Yang, T., & Yuan, J. (2010). Performance of iterative decoding for superposition modulation-based cooperative transmission. IEEE Transactions on Wireless Communications, 9(1), 51–59.

    Article  Google Scholar 

  7. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42(10), 74–80.

    Article  Google Scholar 

  8. Larsson, E. G., & Vojcic, B. R. (2005). Cooperative transmit diversity based on superposition modulation. IEEE Communications Letters, 9(9), 778–780.

    Article  Google Scholar 

  9. Ochiai, H., Mitran, P., & Tarokh, V. (2006). Variable-rate two-phase collaborative communication protocols for wireless networks. IEEE Transactions on Information Theory, 52(9), 4299–4313.

    Article  MathSciNet  MATH  Google Scholar 

  10. Ishii, K., & Ishibashi, K. (2008). Dirty paper coded cooperation utilizing superposition modulation. IEICE Transactions on Communications, 91(5), 1540–1547.

    Article  Google Scholar 

  11. Dayal, P., & Varanasi, M. K. (2008). Distributed QAM-based space-time block codes for efficient cooperative multiple-access communication. IEEE Transactions on Information Theory, 54(9), 4342–4354.

    Article  MathSciNet  MATH  Google Scholar 

  12. Ishii, K., Ishibashi, K., & Ochiai, H. (2011). Multilevel coded cooperation for multiple sources. IEEE Transactions on Wireless Communications, 10(12), 4258–4269.

    Article  Google Scholar 

  13. Imai, H., & Hirakawa, S. (1977). A new multilevel coding method using error-correcting codes. IEEE Transactions on Information Theory, 23(3), 371–377.

    Article  MATH  Google Scholar 

  14. Calderbank, A. R. (1989). Multilevel codes and multistage decoding. IEEE Transactions on Communications, 37(3), 222–229.

    Article  MathSciNet  MATH  Google Scholar 

  15. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space–time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  16. Yuan, D. F., Zhang, F., So, A. F., & Li, Z. W. (2001). Concatenation of space–time block codes and multilevel coding over Rayleigh fading channels. In Proceedings of IEEE vehicular technology conference (Vol. 1, pp. 192–196).

  17. Yuan, D. F., Zhang, P., & Wang, Q. (2001). Multilevel codes (MLC) with multiple antennas over Rayleigh fading channels. In Proceedings of IEEE vehicular technology conference (Vol. 3, pp. 1289–1293).

  18. Shang-Chih, M. A. (2010). Multilevel concatenated space–time block codes. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 93(10), 1845–1847.

    Google Scholar 

  19. Baghaie Abchuyeh, M. (2008). Multilevel spacetime trellis codes for rayleigh fading channels. ME thesis, University of Canterbury, New Zealand.

  20. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space–time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MathSciNet  MATH  Google Scholar 

  21. Cover, T. M. (1972). Broadcast channels. IEEE Transactions on Information Theory, 18(1), 2–14.

    Article  MathSciNet  MATH  Google Scholar 

  22. Baghaie Abchuyeh, M., Martin, P., & Taylor, D. P. (2010). Grouped multilevel space–time trellis codes. IEEE Communications Letters, 14(3), 232–234.

    Article  Google Scholar 

  23. Jain, D., & Sharma, S. (2015). A novel grouped multilevel dynamic space–time trellis coding scheme. International Journal of Communication Systems, 28(6), 1168–1179.

    Article  Google Scholar 

  24. Jain, D., & Sharma, S. (2014). Adaptive generator sequence selection in multilevel space–time trellis codes. Wireless Personal Communications, 75(4), 1851–1862.

    Article  Google Scholar 

  25. Jain, D., & Sharma, S. (2014). Adaptively grouped multilevel space–time trellis codes. Wireless Personal Communications, 74(2), 415–426.

    Article  Google Scholar 

  26. Jain, D., & Sharma, S. (2015). Performance analysis of adaptively grouped multilevel space–time trellis coded systems using different component codes. Wireless Personal Communications, 82(1), 341–352.

    Article  Google Scholar 

  27. Jain, D., & Sharma, S. (2015). Weighted adaptively grouped multilevel space time trellis codes. International Journal of Electronics, 102(5), 886–896.

    Article  Google Scholar 

  28. Sharma, S. (2012). A novel weighted multilevel space–time trellis coding scheme. Computers & Mathematics with Applications, 63(1), 280–287.

    Article  MathSciNet  MATH  Google Scholar 

  29. Jain, D., & Sharma, S. (2014). Adaptively grouped multilevel space–time trellis codes combined with beamforming and component code selection. Wireless Personal Communications, 77(4), 2549–2563.

    Article  Google Scholar 

  30. Orlik, P. V., Zhang, L., Yim, R., & Zhang, J. (2013). U.S. Patent No. 8,520,791. Washington, DC: U.S. Patent and Trademark Office.

Download references

Acknowledgments

This research work is supported by Department of Electronics and Information Technology (DeitY), Ministry of Communications and Information Technology, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sakshi Aneja Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S.A., Sharma, S. A Novel Cooperative Diversity Technique Based on Multilevel Pseudo Space–Time Trellis Coding. Wireless Pers Commun 92, 1787–1800 (2017). https://doi.org/10.1007/s11277-016-3634-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3634-9

Keywords

Navigation