Skip to main content
Log in

Compressive Narrowband Interference Detection for Wideband Cognitive HF Front-Ends

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

An Erratum to this article was published on 17 October 2016

Abstract

An adaptive interference detector based on compressive sensing is introduced in this paper. The proposed detector is part of a narrowband interference mitigation system for wideband cognitive HF front-ends that self-adapts its configuration hinging on the behaviour of the automatic gain control. The use of a compressive sensing architecture allows us to significantly reduce the cost of the additional hardware required to perform the detection of harmful narrowband interfering signals. The proposed detector has been verified with real wideband HF signals and the results show that the adopted approach is a suitable alternative to detect a number of narrowband interfering signals without prior knowledge of their frequency location.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alawsh S.A., & Muqaibel A.H. (2013). Compressive sensing for blind NBI mitigation in UWB systems. In IEEE international conference on signal and image processing applications (ICSIPA), pp. 441–446.

  2. Candès, E. (2006). Compressive sampling. In Proceedings of the international congress of mathematicians, pp. 1433–1452.

  3. Candès, E., & Tao, T. (2005). Decoding by linear programming. IEEE Transactions on Information Theory, 51(12), 4203–4215.

    Article  MathSciNet  MATH  Google Scholar 

  4. Candès, E., Romberg, J., & Tao, T. (2006). Stable signal recovery from incomplete and inaccurate measurements. Communications on Pure and Applied Mathematics, 59(8), 1207–1223.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G., Zhao, Z., Zhu, G., Huang, Y., & Li, T. (2010). HF radio-frequency interference mitigation. IEEE Geoscience and Remote Sensing Letters, 7(3), 479–482.

    Article  Google Scholar 

  6. Chen, N., Wu, S., Li, Y., & Cao, B. (2013). Compressed sensing enabled narrowband interference mitigation for IR-UWB systems. In International conference on wireless communications signal processing (WCSP), pp. 1–5.

  7. Davenport, M.A., Boufounos, P.T., & Baraniuk, R.G. (2009). Compressive domain interference cancellation. In Signal processing with adaptive sparse structured representations (SPARS).

  8. Davenport, M. A., Schnelle, S. R., Slavinsky, J., Baraniuk, R. G., Wakin, M. B., & Boufounos, P. T. (2010). A wideband compressive radio receiver. In Military communications conference (MILCOM), pp 1193–1198.

  9. Donoho, D. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  10. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  11. Hwang, S., Jang, S., Kim, D., & Seo, J. (2010). An MMSE-based compressive domain interference cancellator for wideband systems. In 2nd international conference on computer and automation engineering (ICCAE).

  12. James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning with applications in R. New York: Springer.

    Book  MATH  Google Scholar 

  13. Kanterakis, E., & Bruno, F. (1994). Wideband frequency selective limiter. Proceedings of the Tactical Communications Conference, 1, 421–430.

    Article  Google Scholar 

  14. Kay, S. M. (1998). Fundamentals of statistical signal processing: Detection theory (Vol. II). Upper Saddle River: Prentice-Hall.

    Google Scholar 

  15. La, C., & Do, M. (2006). Tree-based orthogonal matching pursuit algorithm for signal reconstruction. In IEEE international conference on image processing, pp. 1277–1280.

  16. Lavrenko, A., Romer, F., Galdo, G.D., & Thoma, R.S. (2015). Sparsity order estimation for sub-Nyquist sampling and recovery of sparse multiband signals. In IEEE international conference on communications (ICC), pp. 4907–4912.

  17. Maslin, N. M. (1987). HF communications: A systems approach. London: Pitman Publishing.

    Book  Google Scholar 

  18. Melián-Gutiérrez, L., Zazo, S., Blanco-Murillo, J., Pérez-Álvarez, I., García-Rodríguez, A., & Pérez-Díaz, B. (2013). HF spectrum activity prediction model based on HMM for cognitive radio applications. Physical Communication, 9, 199–211.

    Article  Google Scholar 

  19. Melián-Gutiérrez L, Modi N, Moy C, Pérez-lvarez I, Bader F, Zazo S. (2015). Upper confidence bound learning approach for real HF measurements. In IEEE international conference on communications workshops (ICC Workshops), London, United Kingdom.

  20. Needell, D., & Tropp, J. (2009). CoSaMP: Iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26(3), 301–321.

    Article  MathSciNet  MATH  Google Scholar 

  21. Needell, D., & Vershynin, R. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Foundations of Computational Mathematics, 9(3), 317–334.

    Article  MathSciNet  MATH  Google Scholar 

  22. Needell, D., Tropp, J., & Vershynin, R. (2008). Greedy signal recovery review. In 42nd Asilomar conference on signals, systems and computers, pp. 1048–1050.

  23. Oka, A., & Lampe, L. (2009). Compressed sensing reception of bursty UWB impulse radio is robust to narrow-band interference. In IEEE global telecommunications conference (GLOBECOM), pp. 1–7.

  24. Pérez-Díaz, B., Jiménez-Yguacel, E., López-Pérez, J., Pérez-Álvarez I., Zazo, S., & Mendieta-Otero, E. (2009). Design and construction of a broadband (1 MHz) digital HF transceiver for multicarrier and multichannel modulations. In The 11th international conference on ionospheric radio systems and techniques (IRST09), Edinburgh, UK.

  25. Pérez-Díaz, B., Zazo, S., Pérez-Álvarez, I., López-Pérez, J., Melián Gutiérrez L., & Jiménez-Yguacel, E. (2012). Theory and practice for modelling the broadband acquisition in HF transmissions. In The 12th international conference on ionospheric radio systems and techniques (IRST12), York, UK.

  26. Sharma, S. K., Chatzinotas, S., & Ottersten, B. (2014). Compressive sparsity order estimation for wideband cognitive radio receiver. IEEE Transactions on Signal Processing, 62(19), 4984–4996.

    Article  MathSciNet  Google Scholar 

  27. Tropp, J., & Gilbert, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.

    Article  MathSciNet  MATH  Google Scholar 

  28. Tropp, J., Laska, J., Duarte, M., Romberg, J., & Baraniuk, R. (2010). Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Transactions on Information Theory, 56(1), 520–544.

    Article  MathSciNet  Google Scholar 

  29. US Dept of Defense (2011) MIL-STD-188-110C Military Standard. Interoperability and performance standards for data modems

  30. Wang, F., & Tian, Z. (2008). Wideband receiver design in the presence of strong narrowband interference. IEEE Communications Letters, 12(7), 484–486.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Spanish Ministry of Economy and Competitiveness project TEC2013-46011-C3-2-R and Universidad de Las Palmas de Gran Canaria with a scholarship for postgraduate studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Melián-Gutiérrez.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11277-016-3811-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melián-Gutiérrez, L., Garcia-Rodriguez, A., Pérez-Álvarez, I. et al. Compressive Narrowband Interference Detection for Wideband Cognitive HF Front-Ends. Wireless Pers Commun 94, 1643–1660 (2017). https://doi.org/10.1007/s11277-016-3703-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3703-0

Keywords

Navigation