Skip to main content

Advertisement

Log in

Reliable and Energy Efficient Communication Algorithm in Hierarchical Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless sensor networks are data centric networks, which transmit gathered data to sink nodes. Considering energy constraints, how to make full use of the limited energy to reliably transmit data as much as possible becomes a main research region in sensor networks. In this paper, we focus on energy consumption and reliability of different communication modes. Single hop communication mode is simple and easy to implement, but the distant cluster members, especially those on the edge of the networks, need to enlarge transmission power. On the other hand multi-hop communication is not constrained by the communication distance. The relay communication mode guarantees data transmission to a remote cluster head. Considering of the reliability and energy consumption, we propose a voting based clustering communication algorithm. And the optimal cluster number is calculated based on the geometry locations. Finally, several experiments have been done to validate the analysis in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Golrezaei, N., Molisch, A. F., Dimakis, A. G., et al. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Commununication Magazine, 51(4), 142–149.

    Article  Google Scholar 

  2. Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.

    Article  Google Scholar 

  3. Intanagonwiwat, C., Govindan, R., & Estrin, D. (2000). Directed diffusion: A scalable and robust communication paradigm for sensor networks. In Proceedings of the sixth ACM international conference on mobile computing and networking (pp. 56–67).

  4. Rodoplu, V., & Meng, T. H. (1999). Minimum energy mobile wireless networks. IEEE Journal on Selected Areas in Communications, 17(8), 1333–1344.

    Article  Google Scholar 

  5. Zhang, G., Yang, K., & Hu, Q. (2012). Bargaining game theoretic framework for stimulating cooperation in wireless cooperative multicast networks. IEEE Communications Letters, 16(2), 208–211.

    Article  Google Scholar 

  6. Liu, M., Liu, B. & Wen, Y. (2013). An efficient data evacuation strategy for sensor networks in postdisaster applications. International Journal of Distributed Sensor Networks, 9(1), 1–12.

    Article  Google Scholar 

  7. Liu, M., Gong, H., Wen, Y., Chen, G. & Cao, J. (2011). The last minute: Efficient data evacuation strategy for sensor networks in post-disaster applications. In IEEE proceedings of the INFOCOM (pp. 291–295).

  8. Golrezaei, N., Molisch, A. F., Dimakis, A. G., et al. (2013). Femtocaching and device-to-device collaboration: A new architecture for wireless video distribution. IEEE Communications, 51(4), 142–149.

    Article  Google Scholar 

  9. Yu, C., Doppler, K., Ribeiro, C. B., & Tirkkonen, O. (2011). Resource sharing optimization for device-to-device communication underlaying cellular networks. IEEE Transactions on Wireless Communication, 10(8), 2752–2763.

    Article  Google Scholar 

  10. Wang, C., Hussain, S., & Bertino, E. (2016). Dictionary based secure provenance compression for wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 27(2), 405–418.

    Article  Google Scholar 

  11. Kumari, S., Khan, M. K., & Atiquzzaman, M. (2015). User authentication schemes for wireless sensor networks: A review. Ad Hoc Networks, 27, 159–194.

    Article  Google Scholar 

  12. Ghasemigol, M., Ghaemi-Bafghi, A., & Sadoghi-Yazdi, H. (2015). Anomaly detection and foresight response strategy for wireless sensor networks. Wireless Networks, 21(5), 1425–1442.

    Article  Google Scholar 

  13. Cai, J., & Gu, M. (2015). Performance analysis for star topology wireless sensor networks based on IEEE 802.15.4. Journal of tinghua university, 55(5), 565–571.

    MathSciNet  Google Scholar 

  14. Dinh, T. N., Nguyen, N. P., & Thai, M. T. (2013). An adaptive approximation algorithm for community detection in dynamic scale-free networks. In Proceedings of the 32nd IEEE INFOCOM (pp. 55–59).

  15. Gong, M.-G., Zhang, L.-J., Ma, J.-J., & Jiao, L.-C. (2012). Community detection in dynamic social networks based on multiobjective immune algorithm. Journal of Computer Science and technology, 27(3), 455–467.

    Article  MathSciNet  MATH  Google Scholar 

  16. Mohamed, M. M. A., Khokhar, A. A., & Trajcevski, G. (2013). Voronoi trees for hierarchical in-network data and space abstractions in wireless sensor netowrks. In Proceedings of the 16th ACM international conference on modeling, analysis & simulation of wireless and mobile systems (pp. 207–210).

  17. Mohamed, M. M. A., Khokhar, A., & Trajcevski, G. (2014). Energy eficient resource distribution for mobile wireless sensor networks. In Proceedings of the 15th IEEE international conference on mobile data management (pp. 49–54).

  18. Lindsey, S., Raghavendra, C., & Sivalingam, K. M. (2002). Data gathering algorithms in sensor networks using energy metric. IEEE Transactions on Parallel and Distributed Systems, 13(9), 924–935.

    Article  Google Scholar 

  19. Manjeshwar, A., & Agrawal, D. P. (2001). TEEN: A routing protocol for enhanced efficiency in wireless sensor networks. In Proceedings of the 15th international parallel and distributed processing symposium (pp. 2009–2015).

  20. Manjeshwar, A., & Agrawal, D. P. (2002). APTEEN: A hybrid protocol for efficient routing and comprehensive information retrieval in wireless sensor networks. In Proceedings of the 16th international parallel and distributed processing symposium (pp. 195–202).

  21. Younis, O., & Fahmy, S. (2004). HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Transactions on Mobile Computing, 3(4), 366–379.

    Article  Google Scholar 

  22. Silveira, D. et al. (2014). Reference frame context-adaptive variable-length coder: A real-time hardware-friendly approach for lossless external memory bandwidth reduction in current video coding systems. Journal of Real-Time Image Processing, 10(3), 1–17.

    Google Scholar 

  23. Chikkerur, S., Sundaram, V., Reisslein, M., & Karam, L. J. (2011). Objective video quality assessment methods: A classification, review, and performance comparison. IEEE Transactions on Broadcasting, 57(2), 165–182.

    Article  Google Scholar 

  24. Shoaib, U. R., Rehman, Obaid, Akbar, Zeeshan, & Iqbal, Javed. (2012). Performance evaluation o f Bluetooth and Zigbee using monte carlo simulation. International Journal of Computer Science Issues, 9(1), 12–19.

    Google Scholar 

  25. Pudlewski, S., & Melodia, T. (2013). A tutorial on encoding and wireless transmission of compressively sampled videos. IEEE Communications Surveys and Tutorials, 15(2), 754–767.

    Article  Google Scholar 

  26. Pudlewski, S., & Melodia, T. (2010). A distortion-minimizing rate controller for wireless multimediasensor networks. Computer Communications, 33(12), 1380–1390.

    Article  Google Scholar 

  27. Song, Y., Wang, B., Shi, Z., Pattipati, K., & Gupta, S. (2014). Distributed algorithms for energy-efficient even self-deployment in mobile sensor networks. IEEE Transactions on Mobile Computing, 13(5), 1035–1047.

    Article  Google Scholar 

  28. Fischer, C., & Gellersen, H. (2010). Location and navigation support for emergency responders. IEEE Pervasive Computing, 9(1), 38–47.

    Article  Google Scholar 

  29. Wang, J., Li, Z., Li, M., Liu, Y., & Yang, Z. (2013). Sensor network navigation without locations. IEEE Transactions on Parallel and Distributed Systems, 24(7), 1436–1446.

    Article  Google Scholar 

  30. Bocca, M., Kaltiokallio, O., Patwari, N., & Venkatasubramanian, S. (2014). Multiple target tracking with RF sensor networks. IEEE Transactions on Mobile Computing, 13(8), 1787–1800.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (2015XKMS087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiou Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Xu, Z. Reliable and Energy Efficient Communication Algorithm in Hierarchical Wireless Sensor Networks. Wireless Pers Commun 95, 1891–1909 (2017). https://doi.org/10.1007/s11277-016-3705-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3705-y

Keywords

Navigation