Skip to main content

Advertisement

Log in

Underwater Ad Hoc Wireless Communication for Video Delivery

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Due to the high attenuation of the water at high frequencies, underwater communications in freshwater are not being investigated so much. Many current underwater communication systems are based on acoustic or optical techniques. The use of electromagnetic (EM) waves in this medium, even in short distances, increases the bandwidth, which definitely implies a great advantage for video delivery. Related literature shows that the speed propagation and absorption coefficient in freshwater are independent of the working frequency of the transmitted signals. No work shows any temperature dependence with the electromagnetic waves propagation. In this paper, we study the EM wave’s behavior when we vary the temperature at 2.4 GHz in underwater freshwater environments. We are going to study the signal behavior in this medium in order to deliver video images from the marine fish cages with the purpose of monitoring the fish activity. To carry out our study, we fix the water conditions and measure the maximum distance as a function of several network parameters such as the working frequency, data transfer rate, modulations and water temperature. Our results show that some combinations of temperature and working frequency generate better results than others. Finally, we will compare our results with the statements extracted from other works.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lloret, J. (2013). Underwater sensor nodes and networks. Sensors, 13(9), 11782–11796.

    Article  Google Scholar 

  2. Poncela, J., Aguayo, M. C., & Otero, P. (2012). Wireless underwater communications. Wireless Personal Communications, 64(3), 547–560.

    Article  Google Scholar 

  3. Men, Shaoyang, Chargé, Pascal, & Pillement, Sébastien. (2015). A robust and energy efficient cooperative spectrum sensing scheme in cognitive wireless sensor networks. Network Protocols and Algorithms, 7(3), 140–156.

    Article  Google Scholar 

  4. Garcia, M., Sendra, S., Atenas, M., & Lloret, J. (2011). Underwater wireless ad hoc networks: A survey, book: Mobile ad hoc networks: Current status and future trends (pp. 379–411). Boca Raton: CRC Press.

    Book  Google Scholar 

  5. Sendra, S., Lloret, J., García, M., & Toledo, J. F. (2011). Power saving and energy optimization techniques for wireless sensor neworks. Journal of communications, 6(6), 439–459.

    Article  Google Scholar 

  6. Smart, J. H. (2005). Underwater optical communications systems part 1: Variability of water optical parameters. In Military communications conference, (MILCOM 2005) Atlantic City, New Jersey (pp. 1140–1146). October 17–20, 2005.

  7. Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. (2012). Underwater wireless sensor communications in the 2.4 GHz ISM frequency band. Sensors, 12(4), 4237–4264.

    Article  Google Scholar 

  8. Akyildiz, I. F., Pompili, D., & Melodia, T. (2004). Challenges for efficient communication in underwater acoustic sensor networks. ACM Sigbed Review, 1(2), 3–8.

    Article  Google Scholar 

  9. Che, X., Wells, I., Dickers, G., Kear, P., & Gong, X. (2010). Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Communications Magazine, 48(12), 143–151.

    Article  Google Scholar 

  10. Chakraborty, U., Tewary, T., & Chatterjee, R. P. (2009). Exploiting the loss-frequency relationship using RF communication in underwater communication networks, In The 4th international conference on computers and devices for communication, (CODEC 2009) Kolkata, India, December 14–16, 2009.

  11. Balanis, C. A. (1989). Advanced engineering electromagnetics. New York, NY: Wiley.

    Google Scholar 

  12. Somaraju, R., & Trumpf, J. (2006). Frequency, temperature and salinity variation of the permittivity of seawater. IEEE Transactions on Antennas and Propagation, 54(11), 3441–3448.

    Article  Google Scholar 

  13. Zahedi, Y. K., Ghafghazi, H., Ariffin, S. H. S., and Kassim, N. M. (2011). Feasibility of electromagnetic communication in underwater wireless sensor networks. In Informatics engineering and information science (pp. 614–623). Berlin: Springer.

  14. McEachen, J. C., & Casias, J. (2008). Performance of a wireless unattended sensor network in a freshwater environment. In Proceedings of the IEEE 41st annual Hawaii international conference on system sciences 2008, Waikoloa, Big Island, Hawaii (pp. 496–496). January 7–10, 2008.

  15. Sendra, S., Lamparero, J. V., Lloret, J.,& Ardid, M. (2012). Study of the optimum frequency at 2.4 GHz ISM band for underwater wireless ad hoc communications. In Ad hoc, mobile, and wireless networks, (Vol. 7363, pp. 260–273). Berlin: Springer.

  16. Sendra, S., Lamparero, J. V., Lloret, J., & Ardid, M. (2011).Underwater communications in wireless sensor networks using WLAN at 2.4 Ghz. In The 8th IEEE international conference on mobile ad hoc and sensor systems (IEEE MASS 2011), Valencia (Spain) October 17–22, 2011.

  17. Atenas, M., Sendra, S., Garcia, M., & Lloret, J., (2010), IPTV performance in IEEE 802.11n WLANs. In Proceedings of the IEEE global communications conference (IEEE Globecom 2010), Miami (USA) (pp. 929–933). December 6–10, 2010.

  18. Jimenez, J. M., Diaz, J. R., Sendra, S., & Lloret, J. (2014). Choosing the best video compression codec depending on the recorded environment. In Globecom 2014—communications software, services and multimedia symposium, Austin, Texas (USA), December 8–12, 2014.

  19. Partan, J., Kurose, J., & Levine, B. N. (2007). A survey of practical issues in underwater networks. ACM SIGMOBILE Mobile Computing and Communications Review, 11(4), 23–33.

    Article  Google Scholar 

  20. Jiang, S., & Georgakopoulos, S. (2011). Electromagnetic wave propagation into fresh water. Journal of Electromagnetic Analysis and Applications, 3(07), 261.

    Article  Google Scholar 

  21. Abdou, A. A., Shaw, A., Mason, A., Al-Shamma’a, A., Cullen, J., & Wylie, S. (2011). Electromagnetic (EM) wave propagation for the development of an underwater wireless sensor network (WSN). In IEEE sensors Limerick, Ireland October 28–31, 2011.

  22. Wang Z., Zeitoun A., & Jamin S., (2003). Challenges and lessons learned in measuring path RTT for proximity-based applications. In Proceedings of the 6th workshop on passive and active measurement 2003 San Diego, CA, USA.

  23. Chaitanya, D. E., Sridevi, C. V., & Rao, G. S. B. (2011). Path loss analysis of underwater communication systems, IEEE Students’ technology symposium (TechSym 2011) Kharagpur, India, January 14–16, 2011.

  24. Kim, B. C., & Lu, I. T. (2000). Parameter study of OFDM underwater communications system. In OCEANS 2000 MTS/IEEE conference and exhibition providence, Rhode Island–The Ocean State, September 11–14, 2000.

  25. Wells, I., Davies, A., Che, X., Kear, P., Dickers, G., Gong, X., & Rhodes, M. (2009). Node pattern simulation of an undersea sensor network using RF electromagnetic communications. In Ultra modern telecommunications & workshops, St. Petersburg, Russia, October 12–14, 2009.

  26. Al-Shamma’a, A., Shaw, A., & Saman, S. (2004). Propagation of electromagnetic waves at MHz frequencies through seawater. Transactions on IEEE Antennas and Propagation, 52(11), 2843–2849.

    Article  Google Scholar 

  27. Shaw, A., Wylie, S. R., & Toal, D. (2006). Experimental investigations of electromagnetic wave propagation in seawater. In 36th European microwave conference, Manchester, UK (pp. 572–575). September 10–15, 2006.

  28. Cella, U. M., Johnstone, R., & Shuley, N. (2009). Electromagnetic wave wireless communication in shallow water coastal environment: Theoretical analysis and experimental results. In Proceedings of the fourth ACM international workshop on underwater networks Berkeley, California, USA. November 3, 2009.

  29. Sendra, S., Lloret, J., Rodrigues, J. J., & Aguiar, J. M. (2013). Underwater wireless communications in freshwater at 2.4 GHz. IEEE Communications Letters, 17(9), 1794–1797.

    Article  Google Scholar 

  30. Eureqa Formulize web site. (2012). http://formulize.nutonian.com (Last Access: November 28, 2015).

  31. Lloret, J., Garcia, M., Sendra, S., & Lloret, G. (2014). An underwater wireless group-based sensor network for marine fish farms sustainability monitoring. Telecommunication Systems, 60(1), 67–84.

    Article  Google Scholar 

  32. Garcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682–1690.

    Article  Google Scholar 

  33. Heidemann, J., Ye, W., Wills, J., Syed, A., & Li, Y. (2006). Research challenges and applications for underwater sensor networking. In IEEE wireless communications and networking conference (WCNC 2006), Las Vegas, NV USA (pp. 228–235). April 3–6, 2006.

  34. Liu, L., Zhou, S., & Cui, J. H. (2008). Prospects and problems of wireless communication for underwater sensor networks. Wireless Communications and Mobile Computing, 8(8), 977–994.

    Article  Google Scholar 

  35. Parra, L., Sendra, S., Vincent-Vela, M. C., Garcia-Gabaldón, M., & Lloret, J. (2015). Improving the signal propagation at 2.4 GHz using conductive membranes. IEEE Systems Journal. doi:10.1109/JSYST.2015.2496204.

    Google Scholar 

  36. Lloret, J., Sendra, S., Garcia, M., Lloret, G., Group-based underwater wireless sensor network for marine fish farms, In Proceedings of the 2011 IEEE GLOBECOM workshops Houston, Texas, USA (pp. 115–119). December 5–9, 2011.

  37. Lombardo, A., Panarello, C., & Schembra, G. (2013). EE-ARQ: A Green ARQ-based algorithm for the transmission of video streams on noise wireless channels. Network Protocols and Algorithms, 5(1), 41–70.

    Article  Google Scholar 

  38. He, D., Zhang, Y., & Chen, J. (2014). Cryptanalysis and improvement of an anonymous authentication protocol for wireless access networks. Wireless Personal Communications, 74(2), 229–243.

    Article  Google Scholar 

Download references

Acknowledgments

This work has been partially supported by the “Ministerio de Ciencia e Innovación”, through the “Plan Nacional de I+D+i 2008–2011” in the “Subprograma de Proyectos de Investigación Fundamental”(Project TEC2011-27516), by the postdoctoral Grant “contratación de doctores para el acceso al sistema español de ciencia, tecnología e innovación, en estructuras de Investigación de la UPV (PAID-10-14)” by the“Universitat Politècnica de València” and by the “Programa para la Formación de Personal Investigador—(FPI-2015-S2-884)” by the“Universitat Politècnica de València”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Lloret.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sendra, S., Lloret, J., Jimenez, J.M. et al. Underwater Ad Hoc Wireless Communication for Video Delivery. Wireless Pers Commun 96, 5123–5144 (2017). https://doi.org/10.1007/s11277-016-3732-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3732-8

Keywords

Navigation