Skip to main content

Advertisement

Log in

Performance Analysis of a Cognitive Phased Array Radar with Online Tracking Capability

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents the performance analysis of a cognitive phased array radar with online tracking capability. The versatile model has the ability to sense the environment for adaptive selection of active number of array elements in the transmitter, as well as, in receiver arrays. An online extended Kalman filter with a kernel recursive least squares observer has been used to predict the future direction of target. The proposed radar avoids continuous scanning of the surveillance region. Instead, the transmitter, based on the feedback from the receiver, ensures maximum power in the target future direction. It saves a lot of power. Likewise, the intelligent selection of transmitting and receiving array elements, at each scan, results in less computational complexity and improved detection probability along with signal to interference plus noise ratio than that of a conventional phased array. Monte-Carlo based simulations have been conducted to validate the performance of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mouhamadou, M., Vaudon, P., & Rammal, M. (2006). Smart antenna array patterns synthesis: Null steering and multi-user beamforming by phase control. PIER, 60, 95–106.

    Article  Google Scholar 

  2. Haykin, S., Litva, J., & Shepherd, T. J. (1993). Radar array processing (pp. 47–55). New York: Springer.

    Book  Google Scholar 

  3. Haykin, S. (2006). Cognitive radar: A way of the future. IEEE Signal Processing Magazine, 23, 30–40.

    Article  Google Scholar 

  4. Bell, K., Baker, C., Smith, G., Johnson, J., & Rangaswamy, M. (2015). Cognitive radar framework for target detection and tracking. IEEE Journal of Selected Topics in Signal Processing, 9(8), 1427–1439.

    Article  Google Scholar 

  5. Haykin, S., Zia, A., Xue, Y., & Arasaratnam, I. (2011). Control-theoretic approach to tracking radar: First step towards cognition. Digital Signal Processing, 21(5), 576–585.

    Article  Google Scholar 

  6. Haykin, S., Xue, Y., & Setoodeh, P. (2012). Cognitive radar: Step towards bridging the gap between neuroscience and engineering. Proceedings of the IEEE, 100, 3102–3130.

    Article  Google Scholar 

  7. Yanbo, X. (2010). Cognitive radar: Theory and simulations. Thesis, the school of graduate studies at McMaster University, Canada.

  8. Manna, M. L., Stinco, P., Greeo, M., & Gini, F. (2013). Cognitive techniques for a wideband phased array radar. In 2013 IEEE international symposium on phased array systems & technology, Waltham, MA (pp. 389–393).

  9. Basit, A., Qureshi, I. M., Khan, W., Ulhaq, I., & Khan, S. U. (2014). Hybridization of cognitive radar and phased array radar having low probability of intercept transmit beamforming. International Journal of Antennas and Propagation, 2014, 1–11.

    Article  Google Scholar 

  10. Ender, J., & Brüggenwirth, S. (2015). Cognitive radar—Enabling techniques for next generation radar systems. In 2015 16th international radar symposium (IRS), Dresden (pp. 3–12).

  11. Greco, M. S., Abramovich, Y., Ovarlez, J. P., Li, H., & Yang, X. (2015). Introduction to the issue on advanced signal processing techniques for radar applications. IEEE Journal of Selected Topics in Signal Processing, 9(8), 1363–1365.

    Article  Google Scholar 

  12. Zhu, P., Chen, B., & Principe, J. C. (2011). Extended Kalman filter using a kernel recursive least squares observer. In The 2011 international joint conference on neural networks (IJCNN), July 31 2011–Aug 5 2011 (pp. 1402–1408).

  13. Liu, W., Park, I. L., Wang, Y., & Principe, J. C. (2009). Extended kernel recursive least squares algorithm. IEEE Transactions on Signal Processing, 57(10), 3801–3814.

    Article  MathSciNet  Google Scholar 

  14. Zaman, F., Qureshi, I. M., Khan, J. A., & Khan, Z. U. (2013). An application of artificial intelligence for the joint estimation of amplitude and two-dimensional direction of arrival of far field sources using 2-L-shape array. International Journal of Antennas and Propagation. doi:10.1155/2013/593247.

    Google Scholar 

  15. Goldberg, D. E. (1989). Genetic algorithms in search, optimization and machine learning (pp. 1–18). Reading: Addison Wesley.

    Google Scholar 

  16. Quazi, A. (1981). An overview on the time delay estimate in active and passive systems for target localization. IEEE Transactions on Acoustics, Speech and Signal Processing, 29(3), 527–533.

    Article  Google Scholar 

  17. Van Trees, H. L. (2002). Optimum array processing. London: Wiley.

    Book  Google Scholar 

  18. Widrow, B., & Stearns, S. D. (1985). Adaptive signal processing. Englewood cliffs, NJ: Prentice Hall, Inc.

    MATH  Google Scholar 

  19. Hassanien, A., & Vorobyov, S. A. (2010). Phased-MIMO radar: A tradeoff between phased-array and MIMO radars. IEEE Transactions on Signal Processing, 58(6), 3137–3151.

    Article  MathSciNet  Google Scholar 

  20. Kalman, R. E. (1960). A new approach to linear filtering and prediction problem. Transactions of the ASME Series D, Journal of Basic Engineering, 82, 34–45.

    Google Scholar 

  21. Julier S. J., & Uhlmann, J. K. (1997). A new extension of the Kalman filter to nonlinear systems. In Proceedings of AeroSense: 11th international symposium on aerospace/defence sensing, simulation and controls.

  22. Wan, E. A., & van der Merwe, R. (2000), The unscented Kalman filter for nonlinear estimation. In Proceedings of IEEE symposium 2000 (AS-SPCC), Lake Louise, Alberta, Canada.

  23. Nielsen, R. H. (1995). Replicator neural networks for universal optimal source coding. Science, 269, 1860–1863.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Basit.

Ethics declarations

Conflict of interest

All the authors of this manuscript declare that there is no conflict of interest regarding the publication of this manuscript.

Appendix

Appendix

In order to formulate KRLS algorithm, we proceed by taking the recorded sequence

$$\varvec{d}\left( k \right) = \left[ {\left( {y_{1} } \right), \ldots ,\left( {y_{k} } \right)} \right]$$

KRLS algorithm assumes a functional form given as,

$${\varvec{\Phi}}\left( k \right) = \left[ {\varphi \left( 1 \right), \ldots ,\varphi \left( k \right)} \right]$$

In order to find the weight vector w(k) at each iteration we need to minimize the following cost function

$$\sum\limits_{j = 1}^{i} {\left| {d\left( j \right) - w^{T} \varphi \left( j \right)} \right|^{2} } + \lambda \left| {\left| w \right|} \right|^{2}$$

Differentiate the above mentioned cost function and by putting equal to zero we get

$$\varvec{w}\left( k \right) = \left[ {\lambda {\mathbf{I}} + {\varvec{\Phi}}\left( k \right){\varvec{\Phi}}\left( k \right)^{\varvec{T}} } \right]^{ - 1} {\varvec{\Phi}}\left( k \right)\varvec{d}\left( k \right)$$

By using the matrix inversion lemma with the following identification

$$\lambda {\mathbf{I}} \to {\mathbf{A}},\quad {\varvec{\Phi}}\left( i \right) \to {\mathbf{B}},\quad {\mathbf{I}} \to {\mathbf{C}},\quad {\varvec{\Phi}}\left( i \right)^{\varvec{T}} \to \varvec{D}$$
$$\left[ {\lambda {\mathbf{I}} + {\varvec{\Phi}}\left( k \right){\varvec{\Phi}}\left( k \right)^{\varvec{T}} } \right]^{ - 1} {\varvec{\Phi}}\left( k \right) = {\varvec{\Phi}}\left( k \right)\left[ {\lambda {\mathbf{I}} + {\varvec{\Phi}}\left( k \right)^{\varvec{T}} {\varvec{\Phi}}\left( k \right)} \right]^{ - 1}$$

So the weight vector is defined as

$$\varvec{w}\left( k \right) = {\varvec{\Phi}}\left( k \right)\left[ {\lambda {\mathbf{I}} + {\varvec{\Phi}}\left( k \right)^{\varvec{T}} {\varvec{\Phi}}\left( k \right)} \right]^{ - 1} \varvec{d}\left( k \right)$$
$$\varvec{w}\left( k \right) = {\varvec{\Phi}}\left( k \right)\varvec{a}\left( k \right)$$
$$\varvec{a}\left( k \right) = \varvec{Q}\left( k \right)\varvec{d}\left( k \right)$$
$$\varvec{Q}\left( k \right) = \left[ {\lambda {\mathbf{I}} + {\varvec{\Phi}}\left( k \right){\varvec{\Phi}}\left( k \right)^{\varvec{T}} } \right]^{ - 1}$$

By using the matrix partition, we partition the matrix Q as

$$\varvec{Q}\left( k \right) = \left[ {\begin{array}{*{20}c} {\lambda {\mathbf{I}} + {\varvec{\Phi}}\left( {k - 1} \right)^{\varvec{T}} {\varvec{\Phi}}\left( {k - 1} \right)} & {\varvec{h}\left( k \right)} \\ {\varvec{h}\left( k \right)^{\varvec{T}} } & {\lambda + \varphi \left( k \right)^{T} \varphi \left( k \right)} \\ \end{array} } \right]^{ - 1}$$

here \(\varvec{h}\left( k \right) = {\varvec{\Phi}}\left( {k - 1} \right)^{\varvec{T}} \varphi \left( k \right)\).

By using the Block matrix inversion lemma

$$\left[ {\begin{array}{*{20}l} \varvec{A} \hfill & \varvec{B} \hfill \\ \varvec{C} \hfill & \varvec{D} \hfill \\ \end{array} } \right]^{ - 1} = \left[ {\begin{array}{*{20}l} {\left( {A - BD^{ - 1} C} \right)^{ - 1} } \hfill & { - A^{ - 1} B\left( {D - CA^{ - 1} B} \right)^{ - 1} } \hfill \\ { - D^{ - 1} C\left( {A - BD^{ - 1} C} \right)^{ - 1} } \hfill & {\left( {D - CA^{ - 1} B} \right)^{ - 1} } \hfill \\ \end{array} } \right]$$
$$\varvec{Q}\left( k \right) = \left[ {\begin{array}{*{20}c} {\varvec{Q}\left( {k - 1} \right) + \varvec{z}\left( k \right)\varvec{z}\left( k \right)^{\varvec{T}} r\left( k \right)^{ - 1} } & { - \varvec{z}\left( k \right)r\left( k \right)^{ - 1} } \\ { - \varvec{z}\left( k \right)^{\varvec{T}} r\left( k \right)^{ - 1} } & {r\left( k \right)^{ - 1} } \\ \end{array} } \right]$$

As \(\varvec{a}\left( k \right) = \varvec{Q}\left( k \right)\varvec{d}\left( k \right)\)

$$\varvec{a}\left( k \right) = \left[ {\begin{array}{*{20}c} {\varvec{Q}\left( {k - 1} \right) + {\mathbf{z}}\left( k \right){\mathbf{z}}\left( k \right)^{\varvec{T}} r\left( k \right)^{ - 1} } & { - {\mathbf{z}}\left( k \right)r\left( k \right)^{ - 1} } \\ { - {\mathbf{z}}\left( k \right)^{\varvec{T}} r\left( k \right)^{ - 1} } & {r\left( k \right)^{ - 1} } \\ \end{array} } \right]\left[ {\begin{array}{*{20}c} {\varvec{d}\left( {k - 1} \right)} \\ {d\left( k \right)} \\ \end{array} } \right]$$
$$\left[ {\begin{array}{*{20}c} {\varvec{a}\left( {k - 1} \right)} \\ {a\left( k \right)} \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {\varvec{a}\left( {k - 1} \right) - {\mathbf{z}}\left( k \right)r\left( k \right)^{ - 1} e\left( k \right)} \\ {r\left( k \right)^{ - 1} e\left( k \right)} \\ \end{array} } \right]$$

here \({\mathbf{z}}\left( k \right) = \varvec{Q}\left( {k - 1} \right)\varvec{h}\left( k \right)\), \(r\left( k \right) = \lambda + \varphi \left( k \right)^{T} \varphi \left( k \right) - {\mathbf{z}}\left( k \right)^{\varvec{T}} \varvec{h}\left( k \right)\), and \(e\left( k \right) = d\left( k \right) - \varvec{h}\left( k \right)\varvec{a}\left( {k - 1} \right)\).

As we know that the output of the filter is

$$y\left( k \right) = \varvec{w}\left( {k - 1} \right)^{\varvec{T}} \varvec{\varphi }\left( k \right)$$

We also know that

$$\varvec{w}\left( {k - 1} \right)^{\varvec{T}} = \varvec{a}\left( {k - 1} \right)^{\varvec{T}} {\varvec{\Phi}}\left( {k - 1} \right)^{\varvec{T}}$$

So the output is

$$y\left( k \right) = \varvec{a}\left( {k - 1} \right)^{\varvec{T}} {\varvec{\Phi}}\left( {k - 1} \right)^{\varvec{T}} \varvec{\varphi }\left( k \right)$$
$$y\left( k \right) = \varvec{a}\left( {k - 1} \right)^{\varvec{T}} \varvec{h}\left( k \right)$$

where \(\varvec{h}\left( k \right) = {\varvec{\Phi}}\left( {k - 1} \right)^{\varvec{T}} \varvec{\varphi }\left( k \right)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basit, A., Qureshi, I.M., Shaoib, B. et al. Performance Analysis of a Cognitive Phased Array Radar with Online Tracking Capability. Wireless Pers Commun 94, 3163–3180 (2017). https://doi.org/10.1007/s11277-016-3770-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3770-2

Keywords

Navigation