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Abstract

Recent advances in multiple-input multiple-output (MIMO) systems have renewed the interests
of researchers to further explore this area for addressing various dynamic challenges of emerging
radio communication networks. Various measurement campaigns reported recently in the literature show
that physical multipath MIMO channels exhibit sparse impulse response structure in various outdoor
radio propagation environments. Therefore, a comprehensive physical description of sparse multipath
MIMO channels is presented in first part of this paper. Superimposing a training sequence (low power,
periodic) over the information sequence offers an improvement in the spectral efficiency by avoiding
the use of dedicated time/frequency slots for the training sequence, which is unlike the traditional
schemes. The main contribution of this paper includes three superimposed training (SiT) sequence
based channel estimation techniques for sparse multipath MIMO channels. The proposed techniques
exploit the compressed sensing (CS) theory and prior available knowledge of channel’s sparsity. The
proposed sparse MIMO channel estimation techniques are named as, SiT based compressed channel
sensing (SiT-CCS), SiT based hardlimit thresholding with CCS (SiT-ThCCS), and SiT training based
match pursuit (SiT-MP). Bit error rate (BER) and normalized channel mean square error (NCMSE)
are used as metrics for the simulation analysis to gauge the performance of proposed techniques. A
comparison of the proposed schemes with a notable first order statistics based SiT least squares (SiT-LS)
estimation technique is presented to establish the improvements achieved by the proposed schemes. For
sparse multipath time-invariant MIMO communication channels, it is observed that SiT-CCS, SiT-MP,
and SiT-ThCCS can provide an improvement up to 2 dB, 3.5 dB, and 5.2 dB in the MSE at signal to
noise ratio (SNR) of 12 dB when compared to SiT-LS, respectively. Moreover, for BER = 10−1.9,
the proposed SiT-CCS, SiT-MP, and SiT-ThCCS, compared to SiT-LS, can offer a gain of about 1 dB,
2.5 dB, and 3.5 dB in the SNR, respectively. The performance gain in MSE and BER is observed to
improve with an increase in the channel sparsity.
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I. INTRODUCTION

The channel impulse response (CIR) of several outdoor radio propagation environments tends

to be sparse in nature [2–4]. A particular cellular communication environment with distant

dominant scatterers, as shown in Fig. 1a exhibits a sparse CIR [4]. In aeronautical communication

channels, as illustrated in Fig. 1b, we not only have a line-of-sight (LoS) path but also a cluster

of scattered multipath components due to reflection from large scattering objects. Therefore,

impulse response of an aeronautical communication channel is sparse in nature. The wideband

high frequency (HF) communication channel is also sparse in time domain due to long delay

spread and very fewer multipath components [5], as shown in Fig. 1c. The sparse impulse

response is also exhibited in underwater acoustic communication channels [6], as depicted in

Fig. 1d. Similarly, in high-definition television (HDTV) broadcast scenario, as shown in Fig. 1e,

there are only a few dominant echoes but the CIR comprises of manifolds of symbol duration

[7, 8]. Such sparse propagation channels have only certain dominant multipath components that

are largely separated in delay domain, which makes channel estimation a challenging task [9].

In the literature, several sparse channel estimation techniques have been proposed - see e.g.,

[10–16]. In [16], authors have established the fact that during estimation of sparse channels, use

of mean squared error (MSE) criterion along with `1-norm outperforms the Wiener filter results

and conventional estimation methods. In [11], the authors have proposed a matching pursuit

(MP) algorithm in order to estimate a sparse channel. In [13], orthogonal matching pursuit

(OMP) algorithm have been proposed to overcome the convergence issues of MP algorithm. In

[14], compressed channel sensing (CCS) theory has been used for sparse channel estimation that

exploits sparsity of the channel and outperforms the conventional least squares based methods.

In [12], the authors have proposed sparse cognitive matching pursuit (SCMP) algorithm for the

estimation of sparse channel for MIMO orthogonal frequency division multiplexing (MIMO-

OFDM). Furthermore, the authors claim that SCMP requires no prior knowledge of the channel

sparsity in order to obtain an accurate estimate of CIR. In conventional training based channel

estimation approaches, a known training sequence is multiplexed with the information sequence

in time, frequency, and/or code domain at the transmitter, and the receiver estimates the channel
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Fig. 1: Sparse multipath channel propagation environments. (a) Land cellular communications,
(b)Aeronautical communications, (c) HF communications, (d) Underwater acoustic communica-
tion, (e) Terrestrial television broadcast

by exploiting this known training sequence and its corresponding received signal. This scheme

imposes an overhead on the spectral efficiency of the system. In blind channel estimation

techniques, the receiver explicitly estimates the channel by only using the known statistical

properties of the transmitted information sequence, thus, avoiding any overhead of training

sequence. However, in case of blind channel estimation, long data sequences are needed at

the receiver resulting in slow convergence [17]. In superimposed training based (SiT) channel

estimation methods, a known training sequence is superimposed over the data sequence. This

avoids overhead on speed by preventing any use of dedicated time/frequency slots for training

sequence [18]. SiT based techniques are not only spectrally efficient but also effectively track

the channel variations. An SiT based technique was first proposed by Frahang Boroujeny in

[19] for single antenna systems. In [20], a channel estimation technique, based on first order

statistics of the information sequence, has been proposed for single-input multiple-output (SIMO)

time-invariant channels. In [18], authors have proposed a SiT sequence based approach for time

invariant MIMO channels. For the estimation of sparse underwater acoustic channels, a SiT
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based channel estimation technique is proposed in [9]. In [21], a genetic algorithms (GA) based

sparse multipath channels estimation technique with SiT sequence has been presented. In [4],

authors have proposed a compressed sampling based technique for sensing of sparse multipath

channels with SiT for single-input single-output (SISO) systems.

Large scale MIMO systems are thought to be a potential candidate to address various dynamic

challenges of fifth generation (5G) communication networks [22]. This has, thus, renewed

the interest of the researchers in the MIMO systems. Various recently conducted outdoor

measurement campaigns show that physical multipath MIMO channels exhibit sparse impulse

response structure. Therefore, it is now highly desirable to develop channel estimation techniques

for sparse MIMO channels. To the best of authors’ knowledge, no such technique for the

estimation of sparse MIMO communication channels with SiT sequence is available in the

literature. Nevertheless, this paper thus proposes SiT based compressive channel sensing

techniques for time invariant sparse MIMO channels. This paper first presents a new analytical

model for sparse MIMO channels in Section II. The considered communication system model is

presented in Section III. The proposed SiT based sparse MIMO channel estimation techniques are

presented in Section IV. The simulation results along with a comprehensive performance analysis

of the proposed techniques is presented in Section V. Section VI presents the conclusion.

Notations: Boldface uppercase italic letters, e.g., H represent matrices. Boldface lowercase italic

letters represent vectors, e.g., h. Scalar quantities are denoted with small case italic letters, e.g.,

h. Hermitian transpose of a vector is represented as [.]∗.

II. PHYSICAL CHANNEL MODEL FOR MIMO SYSTEMS

The proposed physical model for sparse MIMO communication channels is illustrated in Fig. 2.

The transmitter and receiver antenna arrays consist of N and M antenna elements, respectively.

The horizontal and vertical orientation of both the antenna arrays are modeled as flexible to be

independently rotatable. The transmitter and receiver antenna arrays are considered as mobile

with velocity vT m/s and vR m/s and the direction of their motion as θvT and θvR , respectively.

The adjacent antenna elements in both the arrays are taken as equally separated by a distance dλ.
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Fig. 2: Physical model for sparse MIMO communication channels.

The origin of coordinate system is assumed at the base of first element of the transmit antenna

array. The coordinates of the first elements of the transmit and receive antenna arrays can thus

be represented by (0, 0, hT ) and (d, 0, hR), respectively. The elevation of transmitter and receiver

arrays is denoted by hT and hR, respectively. Subsequently, the coordinates of the nth transmitter

antenna element can be obtained as below,

xn = (n− 1)dλ cosφT cos θT ,

yn = (n− 1)dλ cosφT sin θT ,

zn = (n− 1)dλ sinφT + hT .

(1)

Similarly, the coordinates of the mth receiver antenna element can be obtained as under,



5

xm = (m− 1)dλ cosφR cos θR + d,

ym = (m− 1)dλ cosφR sin θR,

zm = (m− 1)dλ sinφR + hR.

(2)

where θT and φT represent the rotation angles of transmitter antenna array in azimuth and

elevation planes, respectively. Similarly, θR and φR are the angles of rotation of receiver antenna

array in azimuth and elevation planes, respectively.

The distances from nth transmitter and mth receiver antenna element to a uth scattering object

are denoted by dn,u and du,m, respectively. These distances can be expressed in generalized form

as below,

dn,u =
√

(xu − xn)2 + (yu − yn)2 + (zu − zn)2, (3)

du,m =
√

(xn − xu)2 + (yn − yu)2 + (zn − zu)2, (4)

where the coordinates of a uth arbitrary scattering object are denoted by (xu, yu, zu). For

simulation of the proposed channel model, the coordinates of scattering objects may be drawn

from a certain distribution within the defined entire scattering region or a subregion [23]. The

number of scattering objects, within a defined region, may be drawn from a Poisson distribution

[23]. The distribution and the number of scattering objects can be tuned according to the

available empirical measurements. Various distinct types of distributions have been used in the

literature for modelling the physical location of scattering objects in different types of propagation

environment, e.g., uniform [24], Gaussian [25, 26], and hyperbolic [26], etc. The length of

multipath corresponding to uth scattering object can be calculated as, dn,u,m = dn,u + du,m.

The length of LoS path from nth transmitter to mth receiver is given as follows,

dn,m =
√

(xm − xn)2 + (ym − yn)2 + (zm − zn)2. (5)

Azimuth and elevation angles of departure (AoD) from the nth transmitter to the uth scatterer

are denoted by ξn,u and βn,u, respectively. These angles can be expressed as follows,



6

ξn,u = π − arctan

(
yu − yn
xu − xn

)
− θT , (6)

βn,u = arctan

(
zu
xu

)
. (7)

Similarly, azimuth and elevation angles of arrival (AoA) from uth scatterer to the mth receiver

antenna element are represented by γu,m and ψu,m, respectively; and are given as below,

γu,m = π − arctan

(
ym − yu
xm − xu

)
− θR, (8)

ψu,m = arctan

(
zu

xm − xu

)
. (9)

The azimuth and elevation angles formed at nth transmitter element along the LoS direction

towards mth receiver element are denoted by ξn,m and βn,m, respectively; which can be obtained

as below,

ξn,m = π − arctan

(
ym − yn
xm − xn

)
− θT , (10)

βn,m = arctan

(
zm − zn
dLoS

)
. (11)

Similarly, the LoS angles formed at the receiver side can be expressed as below,

γn,m = π − arctan

(
ym − yn
xm − xn

)
− θR, (12)

ψn,m = arctan

(
zm − zn
xm − xn

)
. (13)

In the case of no mobility, the delay τn,u,m of a certain propagation path from nth transmitter

to mth receiver associated with uth scatterer, can be found as below,

τn,u,m =
dn,u,m
c

, (14)

where c represents the velocity of electromagnetic waves’ propagation, i.e., c = 3 × 108m/s.

The minimum path delay for the channel between nth transmitter and mth receiver element is
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exhibited by the LoS path, and is given by,

τmin =
dLoS
c
, (15)

while the maximum path delay τmax is exhibited by the scatterer having the longest path. In

the proposed channel model, both the ends of communication link are taken as mobile, which

imposes time variability in the channel characteristics. The length of a certain propagation path,

from nth transmitter to mth receiver corresponding to uth scattering object, thus changes with

time, depending upon the direction and velocity of mobility. The length of a portion of the

multipath, i.e., from nth transmitter to uth scatterer, can be expressed as,

d́n,u,m(t) =
√

2 d2
n,u + v2

T t
2 − 2 vT t dn,u cos βn,u cos (θT + ξn,u − θvT ). (16)

Similarly, the length of the other portion of the multipath, i.e., from uth scatterer to the mth

receiver, can be obtained as below,

d́u,m(t) =
√

2 d2
u,m + v2

R t2 − 2 vR t du,m cosψu,m cos (θR + γu,m − θvR). (17)

Thus, the total path length from the nth transmitter to the mth receiver after observation time of

t seconds becomes as, d́n,u,m(t) = d́n,u(t) + d́u,m(t). Therefore, the path delay associated with

d́n,u,m(t) can be found as below,

τ́n,u,m(t) =
d́n,u,m(t)

c
. (18)

The time-variant impulse response of the multipath fading channel, comprising of U paths,

between nth transmitter and mth receiver, can be written as,

hnm(τ ; t) =
U∑
u=1

χu(t)e
−j2πfcτ́n,u,m(t) δ(τ − τ́n,u,m(t)), (19)

where fc is the carrier frequency and δ(.) denotes the standard Kronecker delta function. The

attenuation factor associated with uth path is represented by χu(t), such that, E{
∑

u |χu|2} = 1.

The channel impulse response hnm(τ ; t) is a complex Gaussian random process with respect
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to time t. For the scenario when the scattering environment also has certain fixed contributing

scattering objects (or LoS component), the envelope |h(τ ; t)| has a Rice distribution. When the

differential path delay is smaller than a symbol duration, the channel exhibits a flat response

in frequency domain and channel impulse response given in (19) can be written independent

of τ [23, 27]. The path delay is modeled as a multiple of the symbol duration and the total

number of resolvable propagation paths is denoted by L, such that U ≥ L. Moreover, when the

communication nodes are static, the channel exhibits a time independent behaviour and impulse

response vector in (19) can be written independent of t.

As discussed earlier, in various realistic propagation environments, when the scattering environ-

ment has only a few largely distant dominant scattering objects, the channel exhibits a sparse

impulse response. In such scenario, when the channel impulse response vector from nth trans-

mitter to mth receiver has only Q non-zero values at delay positions p̆nm = [p̆0, p̆1, · · · , p̆Q−1].

The sparse channel impulse response vector can thus be represented as,

hlnm =

 6= 0 ; l ∈ p̆nm
= 0 ; otherwise.

(20)

The impulse response vector of a channel is said to be Q sparse, if {Q = ‖hnm‖`0} � L. For

MIMO systems where the separation among transmitter antennas and receiver antennas (i.e.,

dλ) is a fraction of the distance travelled by an electromagnetic wave within a symbol duration,

the channel support may only differ by an unresolvable amount of delay among the channels

between adjacent elements of antenna arrays [28]. For such scenario, the support vectors P̆ nm

may be same for all the values of n and m. The channel impulse response vector from nth

transmitter to mth receiver can be written as, hnm = [h0
nm, h

1
nm, · · · , hL−1

nm ]∗. MIMO channel

matrix for a certain delay l can be written as,

H l =


hl11 hl12 · · · hl1N

hl21 hl22 · · · hl2N
... · · · . . . ...

hlM1 hlM2 · · · hlMN


. (21)
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MIMO channel convolutional matrix can be expressed as,

H =


H0 · · · HL−1 0

... . . . . . . ...

0 H0 · · · HL−1

 . (22)

III. PROPOSED COMMUNICATION MODEL FOR MIMO SYSTEMS

The proposed MIMO communication system model has a block diagram as shown in Fig. 3.

Let N and M be the number of transmit and receive antenna array elements, respectively. The

signal transmitted from a transmit antenna propagates through a sparse MIMO communication

channel with Q non-zero taps. Channel estimator (CE) is implemented with various first-order

statistics based techniques, which are; SiT based compressed channel sensing (SiT-CCS), SiT

based hardlimit thresholding with CCS (SiT-ThCCS), and SiT training based match pursuit

(SiT-MP). The training-sequence effect remover (TER) eliminates the contribution of training

sequence after estimation of the channel’s impulse response and feeds the equalizer with a

regularized version of the received signal. A linear minimum mean square equalizer (LMMSE)

is implemented to estimate the information sequence. Let bn = [bn(0), bn(1), · · · , bn(K − 1)]∗

represent zero-mean information sequence such that bn is mutually independent for each of the

nth user. A known deterministic and periodic training sequence cn = [cn(0), cn(1), · · · , cn(K −

1)]∗, having period P such that cn(k) = cn(k+aP ) for k and a be any integers, is superimposed

(arithmetically added) over the information sequence bn. The superimposed information and

training sequences for a specific nth transmitter is given as below,

xn = bn + cn. (23)

The sequence xn = [xn(0), xn(1), · · · , xn(K − 1)]∗ is transmitted over the jointly sparse

MIMO channel such that the impulse response between nth transmitter and mth receiver is

given by hnm = [h0
nm, h

1
nm, · · · , hL−1

nm ]∗, where L is length of the channel. The signal received at

time instant k by the mth antenna element of receiver array is given by the following equation,
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2
ˆ
Mh

Nc2
c

1
c

CE

TER

MR

My

My
~

...

......

...

...

...
...

...
...

CE

.
.

.

.
.
.

.
.
.

.
.
.

...

...

...

+

+

+

1η

2

~
b

Nb
~

1̂b

2̂b

Nb̂

...
...

2η

Mη

Fig. 3: Block Diagram of the Proposed MIMO Communication System.

ym(k) =
N∑
n=1

L−1∑
l=0

hlnmxn(k − l) + ηm(k), (24)

where ηm(k) denotes kth sample of zero mean complex-valued additive white Gaussian noise

(AWGN) with variance σ2
η . The signal received by all the antenna elements of receiver at time

instant k is y(k) = [y1(k), y2(k), · · · , yM(k)]∗ and given by,

y(k) =
L−1∑
l=0

H lx(k − l) + η(k), (25)

where x(k− l) = [x1(k − l), x2(k − l), · · · , xN(k − l)]∗ and η(k) = [η1(k), η2(k), · · · , ηM(k)]∗.

Temporal sampling yields following representation of the received signal,

y̆(k) = Hx̆(k) + η̆(k), (26)

where
y̆(k) = [y∗(k + L− 1),y∗(k + L− 2), · · · ,y∗(k)]

∗
,

x̆(k) = [x∗(k + L− 1), x∗(k + L− 2), · · · ,x∗(k)]
∗
,

η̆(k) = [η∗(k + L− 1),η∗(k + L− 2), · · · ,η∗(k)]
∗
.
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IV. MIMO CHANNEL ESTIMATION BASED ON FIRST-ORDER STATISTICS WITH SIT.

For a given MIMO communication system if each user is assigned with a specific training

sequence which is added with the information sequence, then, first order statistics of the received

signal can be used to estimate the channel outlined in [20]. In this section, the SiT based channel

estimation technique of [18] is extended for the estimation of sparse MIMO channels. In this

technique, each user is assigned with a distinct cycle frequency. Suppose for a specific transmitter

n the training sequence cn(k) is periodic. The period of the training sequence is P = P̃N , where

P̃ is a positive integer. The training sequence cn(k) is given as below,

cn(k) =
P−1∑
i=0

ci,n ej(2πi/P )k, ∀k, (27)

where, j =
√
−1 and

ci,n =
1

P

P−1∑
k=0

cn(k) e−j(2πi/P )k, (28)

Choose cn(k) in such a way that only P̃ coefficients out of total P are non zero, so cn(k) can

be written as follows,

cn(k) =
P̃−1∑
i=0

c′i,n ejαi,nk, ∀k, (29)

where αi,n = 2π(iN + n − 1)/P , and c′i,n are suitably chosen coefficients for 1 ≤ n ≤ N and

0 ≤ i ≤ P̃ − 1. In order to design cn(k), first choose a periodic base sequence c̄o(k) that has a

period of P̃ [18] in such a way that,

c̄i,o =
1

P̃

P̃−1∑
k=0

c̄o(k) e−j(2πi/P̃ )k. (30)

The periodic training sequence c̄1(n), with period P , is generated by replicating c̄o(k) for N

times. The training sequence of a specific transmitter n can, therefore, be defined as follows

[18],

cn(k) = σcn c̄1(k) ej(2π/P )(n−1)k for n = 1, 2, ..., N. (31)

Expectation of the received signal ym(k) at mth receiver can be found as below,
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E{ym(k)} =
N∑
n=1

P̃−1∑
i=0

[
L∑
l=0

c′i,nh
l
nme−jαi,nl

]
ejαi,nk. (32)

For n1 6= n2, we have αi1,n1 6= αi2,n2 for any {i1, i2} ∈ 0, 1, ..., P̃ − 1. Let dnm =

[dnm,0, dnm,1, · · · , dnm,(P̃−1)]
∗, where dnm,i is given by,

dnm,i =
L∑
l=0

c′i,nh
l
nme−jαi,nl (33)

The mean square consistent estimate d̂nm = [d̂nm,0, d̂nm,1, · · · , d̂nm,(P̃−1)]
∗ of dnm can be

obtained by computing its coefficient as given in [18], which is as follows,

d̂nm,i =
1

T

T−1∑
k=0

ym(k) e−jαi,nk (34)

where T represents the number of received symbols, as T → ∞ , d̂nm,i → dnm,i. The

relationship given in (34) can also be written vector form as below,

d̂nm = Cnhnm (35)

where Cn can be obtained as

Cn = diag {c′0,n, c′1,n, · · · , c′(P̃−1),n
}V n (36)

where V n can be found as,

V n =



1 1 · · · 1

1 e−jα1,n · · · e−jα1,nL

1 e−jα2,n · · · e−jα2,nL

...
...

...
...

1 e−jα(P̃−1),n · · · e−jα(P̃−1),nL


. (37)
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A. SiT based least squares (SiT-LS)

The least squares estimate of the channel between nth transmitter and mth receiver can be

obtained from the linear model in ((35)), as proposed in [20], and is given below,

ĥ
SiT−LS

nm = arg min
h̃nm

‖ĥnm −Cnh̃nm‖2
`2 (38)

The above estimate can also be obtained as,

ĥ
SiT−LS

nm = (C∗nCn)−1C∗nd̂nm (39)

To obtain the channel estimate for non-zero mean noise, set P̃ ≥ L+ 1, omit first row from Cn

and d̂nm,0 from d̂nm.

B. Proposed SiT based MIMO Channel Estimation

The error in the estimate d̂nm,i of dnm,i can be realized by substituting ym(k) from (24) in

(34). The simplified solution for d̂nm,i can be expressed as under,

d̂nm,i = dnm,i + εnm,i (40)

where εnm,i represents the error in the estimate of dnm,i. The estimation error εnm,i contains

contribution from additive noise (η̃nm,i), interference from superimposed information sequence

of all the transmitters (b̃nm,i), and interference from training sequence of cross channels (c̃ñm,i).

The estimation error is thus given by, εnm,i = c̃ñm,i + b̃nm,i + η̃nm,i; where,

c̃ñm,i =
1

T

T−1∑
k=0


N−1∑
ñ = 1

ñ 6= n

L∑
l=0

hlñmcñ(k − l)

 e−jαi,ñk, (41)

b̃nm,i =
1

T

T−1∑
k=0

[
N−1∑
n=1

L∑
l=0

hlnmbn(k − l)

]
e−jαi,nk, (42)
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η̃nm,i =
1

T

T−1∑
k=0

ηm(k)e−jαi,nk. (43)

Ignoring the inherent error εnm,i leads to a non-realistic estimate of the channels. Moreover, the

first order statistics based technique presented in previous section is not optimized for the case of

sparse multipath channel. This section, thus, presents three extensions of the first-order statistics

based MIMO channel estimation model in (35) for the case of sparse multipath channels by

incorporating a compensation for the inherent estimation error εnm,i. The proposed techniques

include SiT-CCS, SiT-ThCCS, and SiT-MP.

1) SiT based CCS: During the past few years, compressed sensing has emerged as a new

paradigm for sampling and reconstruction of sparse signals. It has been established in [29–

32] that a finite-dimensional sparse signal can be exactly reconstructed from fewer, linear, and

nonadaptive measurements by solving a well-defined convex optimization problem. In literature

CS approach has been established as an efficient solution to estimate sparse multipath channels -

see e.g., [4, 33–35]. To ensure exact reconstruction of the received signal, a measurement matrix

should satisfy restricted isometry property (RIP), [29, 30]. For the linear model given in (35),

the condition for RIP is given by,

(1− δQ)‖hnm‖2
`2
≤ ‖Cnhnm‖2

`2
≤ (1 + δQ)‖hnm‖2

`2
(44)

where 0 < δQ < 1 is the restricted isometry constant of the measurement Cn. If the condition

given in (44) holds then Cn satisfies RIP of order Q and is sufficient for exact recovery of the

sparse channel. In order to estimate SiT based sequence of MIMO channel, the `1 minimization

problem can be recast from the model in (35), as given below,

ĥ
SiT−CCS

nm = arg
h̃nm

min ‖h̃nm‖`1 subject to ‖Ch̃nm − d̂nm‖`2 ≤ ε (45)

where the parameter ε is proportional to magnitude of the error εnm, i.e., ε ∝ ‖εnm‖2
`2

. The convex

optimization problem given in (45) can be solved using a compressed sensing based technique

known as Dantzig selector (DS) [36]. The DS performs near optimal with high computational
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efficiency and improved recovery accuracy.

2) SiT based Hard-limit Thresholded CCS: The estimated channel impulse response, obtained

by using CCS, consists of some nominal non-zero values , whereas, the correct estimate of the

taps is a zero value. Hard limiting on the estimated channel impulse response vector according

to a predefined threshold (ζ) level ensures a sparse vector. Such hard-limit thresholding can be

applied as follows,

ĥl, SiT−ThCCS
nm =


ĥl, SiT−CCS
nm ; ĥl, SiT−CCS

nm > ζ

0 ; otherwise
(46)

where ĥl, SiT−CCS
nm represents the estimate of lth tap of the channel from nth transmitter to mth

receiver obtained by the CCS technique presented in previous section.

3) MP based SiT Sparse Multipath MIMO Channel Estimation : Since the channel under

consideration is sparse, a large number of taps in the channel vector hnm is either zero or

below the noise floor. Thus, an MP algorithm can be employed to estimate the sparse channel as

proposed in [11]. Hence, to estimate the channels from the model in (35), the positions of non-

zero taps are first determined and channel estimation is then carried out only for these specific

non-zero positions. We describe the proposed SiT-MP algorithm in the following paragraphs. In

(35), both Cn and d̂nm are known, therefore, d̂nm can be expanded as,

d̂nm = c̄n,oh
0 + c̄n,1h

1 + c̄n,2h
2 + . . .+ c̄n,P̃−1h

P̃−1. (47)

where c̄n,i is the ith column vector of Cn. First, find columns in matrix

Cn = [c̄n,0, c̄n,1, . . . , c̄n,(P̃−1)] that are best aligned with output vector d̂nm; let this vector be

denoted by c̄qp. Let Q be the number of non-zero taps among a total of L channel taps. The

output vector d̂nm is spanned by total Q columns of Cn that actually correspond to Q non-zero

entries of the sparse channel hnm. By projecting all columns of Cn on d̂nm, we can find the

best aligned column of Cn with d̂nm that will correspond to the position of one of the non-zero

entries of hnm. In this way, we can find the location of non-zero entries present in the sparse
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channel hnm in each iteration. Once the non-zero tap position of hnm is determined, the value

at that tap position can be found. The algorithm proceeds in the same way for each iteration. In

order to find the non-zero tap positions of hnm in the pth iteration, the projection of Cn along

d̂nm is found as,

qp = arg
c̄n,j 6={c̄n,q1 ,...,c̄n,qp−1}

max
| c̄∗n,jd̃nm

p−1 |2

‖ c̄n,j ‖2
`2

, (48)

where qp represents the index of best aligned column of Cn with d̂nm and corresponds to one

of the non-zero tap hnm. The projection of Cn in each iteration is computed along the residual

error vector of previous iteration d̃
p−1

nm . For the very first iteration the residual error vector is

d̃
o

nm = d̂nm and in the preceding iterations its value is attained as,

d̃
p

nm = d̃
p−1

nm −
c∗qpd̃

p−1

nm

‖ c∗qp ‖2
`2

cqp . (49)

where c∗qp denotes the best aligned column vector of Cn with residual error vector d̃
p−1

nm for a

specific pth iteration that corresponds to the non-zero entry of sparse channel. The estimate of

a non-zero tap of the channel ĥqpnm at position qp can thus be obtained as,

ĥq
p, SiT−MP
nm =

c∗qpd̃nm
p−1

‖ c∗qp ‖2
`2

. (50)

The iterations continue until all the non-zero taps in ĥ
SiT−MP

nm are determined, or when the error

residual in a specific iteration becomes smaller than a predefined threshold, i.e., ‖ d̃pnm ‖ < ε.

The cost of computing the basic model presented in equation (35) is same for all the proposed

techniques. However, the additional computational cost to estimate the channels from (35)

varies for each of the proposed techniques i.e., SiT-LS, SiT-MP, SiT-CCS, and SiT-ThCCS.

Each iteration of the matching pursuit algorithm for computing a particular channel’s estimate

ĥnm implies a cost of O(P̃ log(P̃ )) in addition to the cost of computing (35). The proposed

SiT-CCS estimation technique is implemented using Dantzig selector solution to (45). The

Dantzig selector implemented by using primal-dual method, which incurs a computational cost

of O
(√

P̃ log( P̃
ε
)
)

. For the SiT-ThCCS technique, the hard-limiting of the obtained channels’
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estimate extends an additional computational cost, proportional to the length of channel L, over

the cost implied by SiT-CCS.

C. Minimum Mean Square Error (MMSE) Equalizer

Since the training sequence assigned to each of the transmitter in MIMO system is also known

at their corresponding receivers so we have to cancel out the effect of training sequence that also

gets convolved with channel when superimposed with information sequence. Thus before passing

the signal to equalizer input we must have to cancel out the effect of convolved training sequence

of the receiver whose information sequence is to be determined along with the convolved training

sequence of other users as well. Once the effect of training sequence is omitted we can input

that signal at equalizers input. The following steps are required to equalize the superimposed

training based information sequence,

ỹm(k) = ym(k)−
N∑
n=1

L∑
l=0

ĥlnm cn(k − l), (51)

where ĥlnm represents the estimate of lth tap of channel from nth transmitter to mth receiver.

The estimate of channel may be taken from any of the estimation techniques discussed in the

previous sections, i.e., ĥnm = {ĥSiT−LS

nm , ĥ
SiT−CCS

nm , ĥ
SiT−MP

nm , or ĥ
SiT−ThCCS

nm }. For the equalizer

at the mth receiver, the optimal equalizer’s weights wm can be obtained as in [37], given as

under,

wnm =
(
ĤĤ

∗
+ 2σ2

mI
)−1

Ĥ |(m−1)(Le+L−1)+(τd+1), (52)

where m is the receiver index such that 1 ≤ m ≤ M , Le denotes length of equalizer, τd is the

decision delay of equalizer’s mappers, I denotes the (N × Le)× (N × Le) identity matrix and

Ĥ|i is the ith column of Ĥ . The convolutional matrix Ĥ having dimensions Le× (Le +L− 1)

is given by,

Ĥn,m =



ĥ0n,m ĥ1n,m · · · ĥL−1
n,m 0 · · · 0

0 ĥ0n,m ĥ1n,m · · · ĥL−1
n,m

. . .
...

...
. . . . . . . . . . . . . . . 0

0 . . . 0 ĥ0n,m ĥ1n,m · · · ĥL−1
n,m


, (53)
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The overall convolutional matrix Ĥ of the MIMO system is give as,

Ĥ =


Ĥ1,1 Ĥ1,2 · · · Ĥ1,M

Ĥ2,1 H2,2 · · · Ĥ2,M

...
... · · · ...

ĤN,1 ĤN,2 · · · ĤN,M


. (54)

The estimate of transmitted information sequence from the nth transmitter can thus be obtained

from the following equation followed by a decision mapper, as shown in Fig. 3.

b̃n(k) =
M∑
m=1

Le−1∑
i=0

winmỹm(k − i). (55)

The output of the equalizer, b̃n, is then fed as an input to a decision mapper, as shown in

Fig. 3, that performs mapping of the symbols according to the used modulation scheme with

the decoded symbols represented by b̂n.

V. RESULTS AND DISCUSSION

In this section, we present the computer simulations along with an analysis of the obtained

results. The performance metrics used for the analysis are NCMSE and BER, which are well

established metrics. The BER quantifies reliability of the radio channel, which can be defined

as the ratio between the amount of corrupted bits and total number of transmitted bits. The

normalized channel mean square error (NCMSE) of the estimated channel is defined as,

NCMSE =

∑M
m=1

∑N
n=1

∑L−1
l=0

∣∣∣ĥlnm − hlnm∣∣∣2∑M
m=1

∑N
n=1

∑L−1
l=0 |hlnm|

2
, (56)

A 2×2 MIMO communication system is considered for the simulations, i.e., N = 2 and M = 2.

The simulations are performed for time-invariant and frequency selective MIMO channels. The

realization of all the channels hnm is independently generated for each Mote Carlo run, by

keeping a certain fixed level of sparsity, Q/L. The amount of scatterers within a certain range

is drawn from Poison distribution by adapting a sub-region approach discussed in [23], and
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the location of scatterers within each subregion is drawn from uniform distribution. To ensure

a certain level of sparsity, all the scatterers except the scatterers corresponding to the selected

positions (P̆ nm) of non-zero taps are discarded. However, the support (non-zero delay positions’

vectors P̆ nm) of impulse response vector for all the channels is drawn independently from

uniform distribution. The values of non-zero taps of a channel hnm follow zero-mean Gaussian

distribution. The number of resolvable multipath components are taken equal for all the channels,

fixed at L = 14 with variance 1/(M(L+1)). A periodic training sequence is generated following

the m−sequence approach presented in [18]. A periodic base sequence with period P̃ = 15 is

taken fixed as, {-1,-1,-1,1,1,1,1,-1,1,-1,1,1,-1,-1,1}, for all the simulation results. Zero mean

white Gaussian noise is independently generated at each receiver satisfying a certain signal-to-

noise (SNR) ratio. The SNR at mth receiver is defined as the ratio between variance of received

signal σ2
ym and variance of noise σ2

m, i.e., SNRm = σ2
ym/σ

2
m. The zero mean BPSK modulated

information sequences (bn ∈ {1,−1}) is generated mutually independent for each transmitter.

Performance comparison of the proposed techniques and the first order statistics based

technique (SiT-LS) in [18] is presented in Fig. 4a and Fig. 4b for NCMSE and BER against

SNR, respectively. The message length and sparsity level for this plot are taken as K = 900 bits

and Q/L = 3/14, respectively. In Fig. 4a it can be observed that the proposed channel estimation

techniques (i.e., SiT-CCS, SiT-MP, and SiT-ThCCS) outperforms the first order statistics based

channel estimation technique (i.e., SiT-LS). When compared to SiT-LS, the proposed techniques

SiT-CCS, SiT-MP, and SiT-ThCCS provide an improvement of 2dB, 3.5dB, and 5.2dB in MSE

at an SNR = 12dB, respectively. This improvement in the plots from the proposed techniques

is due to the consideration of a compensation parameter for the inherent estimation error εnm

and use of prior available knowledge of channels’ sparsity. The proposed techniques provide,

better performance compared to the first order statistics based technique for the case of sparse

channels, and similar performance for the case of non-sparse channels. Fig. 4b present BER

based comparison of the proposed and SiT-LS estimation techniques. It can be observed that a

performance gain of about 1dB, 2.5dB, and 3.5dB in SNR can be achieved by SiT-CCS, SI-MP,

and SiT-ThCCS when compared to SiT-LS for BER = 10−1.9. The BER performance can further
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Fig. 4: MSE and BER based comparative analysis between SiT-LS and the proposed SiT-CCS,
SiT-ThCCS, and SiT-MP for 900 bits message signal length.
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Fig. 5: Effect of variation of sparsity level Q on the MSE Performance of the proposed SiT-MP
and SiT-CCS techniques.

be enhanced by employing the iterative algorithm proposed in [4].

To demonstrate the effect of channel’s sparsity level (i.e., Q/L), the MSE is plotted against

SNR for different values of sparsity (i.e., Q/L = 2/14, 3/14, and 4/14) in Fig. 5a and Fig. 5b

for the proposed SiT-MP and SiT-CCS, respectively. For these plots, the training to information



21

0 5 10 15 20
−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

−7

SNR(dB)

N
or

m
al

iz
ed

 C
ha

nn
el

 M
S

E
(d

B
)

 

 
σ

c
2/σ

b
2 = 0.5

σ
c
2/σ

b
2 = 1

σ
c
2/σ

b
2 = 1.5

σ
c
2/σ

b
2 = 2

(a) Effect of TIR (σ2
c/σ

2
b ) on SiT-MP.

0 5 10 15 20
−17

−16

−15

−14

−13

−12

−11

−10

−9

−8

SNR(dB)

N
or

m
al

iz
ed

 C
ha

nn
el

 M
S

E
(d

B
)

 

 
σ

c
2/σ

b
2 = 0.5

σ
c
2/σ

b
2 = 1

σ
c
2/σ

b
2 = 1.5

σ
c
2/σ

b
2 = 2

(b) Effect of TIR (σ2
c/σ

2
b ) on SiT-CCS.

Fig. 6: Effect of the variation of TIR (σ2
c/σ

2
b ) on MSE performance of the proposed SiT-MP and
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Fig. 7: MSE performance comparison of SiT-CCS and SiT-MP for 2 × 2 and 3 × 3 MIMO
system.

sequence power ratio σ2
c/σ

2
b is set to unity. It can be observed that by decreasing number of

non-zero taps, i.e., by decreasing Q for a fixed L, the MSE performance improves for all SNR

values obtained from both the SiT-CCS and SiT-MP estimation techniques. Thus, the performance

of the proposed schemes further improve with an increase in the channel’s sparsity. The gain

in performance improvement with an increase in the channel’s sparsity is higher for SiT-MP

technique when compared with the performance gain by SiT-CCS technique.
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To elucidate the effect of TIR (i.e., σ2
c/σ

2
b ) on the performance of the proposed SiT-MP and

SiT-CCS channel estimation techniques, the MSE is plotted against SNR for different values of

TIR, ranging from 0.5 to 2 with uniform difference of 0.5, in Fig. 6a and Fig. 6b, respectively.

These graphs are obtained for channel’s sparsity level Q/L set to 3/14. It can be noted that with

an increase the training sequence’s power (i.e., σ2
c ) for fixed information sequence’s power (i.e.,

σ2
b ), the MSE performance of channel estimator is observed to improve. However, decreasing

the contribution of information sequence has an adverse effect on the BER performance of the

system in decoding of information sequence. Therefore, choice of an optimum value for TIR is

highly resaleable to satisfy a good tradeoff between MSE and BER performance.

In order to prove the validity of the proposed channel estimation techniques for higher order

MIMO systems, the MSE performance analysis for a 3×3 MIMO systems have been performed

in comparison with a 2 × 2 MIMO system in Fig.7. This graph is obtained for the TIR taken

as σ2
c/σ

2
b = 0.4 and sparsity of the channels set to Q/L = 4. To demonstrate the effect of hard-

limiting threshold parameter, ζ , on the proposed SiT-ThCCS estimation technique, MSE is plotted

against SNR for different values of ζ in Fig. 8. This plot is obtained for the channel’s sparsity

level Q/L set to 3/14 and TIR σ2
c/σ

2
b set to unity. The plot is generated for different values
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of limiting threshold, viz: 1/5, 1/10, 1/15, and1/20 times the highest value of channel impulse

response vector; where, the initial channel estimate is obtained through SiT-CCS technique. It

is evident in the plot that MSE performance improves with a decrease in the value of ζ up

to a certain optimum value, and the plot shows a converse behaviour for a further decrease in

ζ beyond a certain optimum value. Based on the simulation analysis, it is observed that the

MSE performance is optimum for ζ equal to 1/5 times the strongest multipath component in

the channel.

VI. CONCLUSION

A channel model for the implementation of sparse MIMO channels has been proposed. Three

SiT compressed channel sensing based estimation techniques has been proposed for frequency-

selective time-invariant sparse MIMO communication channels. A thorough analysis based on

the simulation results has been presented. The MSE and BER have been used for the performance

analysis. Effect of various parameters, such as, the channels’ sparsity level, training to information

power ratio,threshold coefficient, and message length, has thoroughly been investigated. It has

been established that the proposed SiT-CCS, SiT-ThCCS, and SiT-MP techniques outperform the

traditional SiT-LS technique for the case of sparse MIMO channels. It has been shown that the

proposed SiT-CCS, SiT-MP, and SiT-ThCCS can provided an improvement of 2dB, 3.5dB, and

5.2dB in the MSE at SNR of 12dB when compared to SiT-LS in [18], respectively. Consequently,

a gain of about 1dB, 2.5dB, and 3.5dB in SNR has been observed at BER = 10−1.9 by the

proposed SiT-CCS, SiT-MP, and SiT-ThCCS when compared to SiT-LS [18], respectively. This

performance gain in MSE and BER has been observed to increase with an increase in the

channels’ sparsity.
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