Skip to main content
Log in

Design and Performance Evaluation of Metamaterial Inspired MIMO Antennas for Wireless Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper presents very close and high isolation composite right left handed transmission line MIMO antennas. The MIMO antennas consist of two elements each operates at 5.8 GHz for wireless applications. The two antenna elements are designed using one composite right left handed unit cell separated by only 0.034 λ0. The reduction of mutual coupling between the two antenna elements depends on current reversal between two antenna elements. The proposed MIMO antennas have the advantage of compactness (its size is only 3 × 2.6 cm2). In order to evaluate the performance of MIMO antennas, analysis of mutual coupling, correlation coefficient, diversity gain and total active reflection coefficient are presented. The proposed antennas can achieve isolation = 45 dB and envelope correlation = 0.0002 at 5.8 GHz. The simulated results are confirmed by the measurement results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Murch, R. D., & Letaief, K. B. (2002). Antenna systems for broadband wireless- access. IEEE Communications Magazine, 40(4), 76–83.

    Article  Google Scholar 

  2. Yang, F., & Rahmat-Sami, Y. (2003). Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications. IEEE Transactions on Antennas and Propagation, 51(10), 2936–2946.

    Article  Google Scholar 

  3. Zhang, L., Castaneda, J. A., & Alexopoulos, N. G. (2004). Scan blindness free phased array design using PBG materials. IEEE Transactions on Antennas and Propagation, 52(8), 2000–2007.

    Article  Google Scholar 

  4. Fu, Y., & Yuan, N. (2004). Elimination of scan blindness in phased array of microstrip patches using electromagnetic bandgap materials. IEEE Antennas and Wireless Propagation Letters, 3, 63–65.

    Article  Google Scholar 

  5. Yang, L., Fan, M., Chen, F., She, J., & Feng, Z. (2005). A novel compact electromagnetic-bandgap (EBG) structure and its applications for microwave circuits. IEEE Transactions on Microwave Theory and Techniques, 53(1), 183–190.

    Article  Google Scholar 

  6. Abdalla, M., Abdelreheem, A., Abdegellel, M., & Ali, A. (2013). Surface wave and mutual coupling reduction between two element array MIMO antenna, 2013 IEEE AP-S International Antenna and Propagation Symposium Digest, July 7–13, Orlando, USA (pp. 178–179).

  7. Salehi, M., & Tavakoli, A. (2006). A novel low mutual coupling microstrip antenna array design using defected ground structure. AEU-International Journal of Electronics and Communications, 60(10), 718–723.

    Article  Google Scholar 

  8. Guha, D., Biswas, M., & Antar, Y. M. M. (2005). Microstrip patch antenna with defected ground structure for cross polarization suppression. IEEE Antennas and Wireless Propagation Letters, 4, 455–458.

    Article  Google Scholar 

  9. Guha, D., Biswas, S., Joseph, T., & Sebastian, M. T. (2008). Defected ground structure to reduce mutual coupling between cylindrical dielectric resonator antennas. Electronics Letters, 44(14), 836–837.

    Article  Google Scholar 

  10. Xiao, S., Tang, M.-C., Bai, Y.-Y., Gao, S., & Wang, B.-Z. (2011). Mutual coupling suppression in microstrip array using defected ground structure. IET Microwaves, Antennas and Propagation, 5(12), 1488–1494.

    Article  Google Scholar 

  11. Ibrahim, A. A., Abdalla, M. A., Abdel-Rahman, A. B., & Hamed, H. F. A. (2013). Compact MIMO antenna with optimized mutual coupling reduction using DGS. International Journal of Microwave and Wireless Technologies, 2013(12), 173–180.

    Google Scholar 

  12. Abdalla, M. A., & Mohamed, I. S. (2015). Mutual coupling reduction in integrated transmit–receive array antennas using high order DGS filter, 2015 IEEE AP-S International Antenna and Propagation Symposium Digest, Vancouver, Canada (pp. 432–433).

  13. Caloz, C., & Itoh, T. (2006). Electromagnetic metamaterials transmission line theory and microwave applications. New Jersey: Wiley.

    Google Scholar 

  14. Oliner, A. A. (2003). A planar negative-refractive-index medium without resonant elements: Proceedings IMS International Microwave Symposium, Philadelphia, USA, (pp. 191–194).

  15. Eleftheriades, G. V., Iyer, A. K., & Kremer, P. C. (2002). Planar negative refractive index media using periodically L-C loaded transmission lines. IEEE Transactions on Microwave Theory and Techniques, 50, 2702–2712.

    Article  Google Scholar 

  16. Caloz, C., Itoh, T., & Rennings, A. (2008). CRLH metamaterial leaky-wave and resonant antennas. IEEE Antennas and Propagation Magazine, 50(5), 25–39.

    Article  Google Scholar 

  17. Lee, C.-H., & Itoh, T. (2006). Composite right/left-handed transmission line based compact resonant antennas for RF module integration. IEEE Transaction on Antennas and Propagation, 54(8), 2283–2291.

    Article  Google Scholar 

  18. Caloz, C. (2011). Metamaterial dispersion engineering concepts and applications. Proceedings of the IEEE, 99(10), 1711–1719.

    Article  Google Scholar 

  19. Lai, A., Itoh, T., & Caloz, C. (2004). Composite right/left-handed transmission line metamaterials. IEEE Microwave Magazine, 5(3), 34–50.

    Article  Google Scholar 

  20. Zhu, J., & Eleftheriades, G. V. (2009). A compact transmission-line metamaterial antenna with extended bandwidth. IEEE Antennas and Wireless Propagation Letters, 8, 295–298.

    Article  Google Scholar 

  21. Abdalla, M. A., Hu, Z. & Muvianto, C. (2016). Analysis and design of triple band metamaterial simplified CRLH cells loaded monopole antenna. International Journal of Microwave and Wireless Technologies, 1–11. doi:10.1017/S1759078716000738.

  22. Abdalla, M. A., & Fouad, M. A. (2016). CPW dual band antenna based on asymmetric generalized metamaterial and #x03C0; NRI transmission line for ultra compact applications. Progress in Electromagnetic Research C, 62, 99–107.

    Article  Google Scholar 

  23. Wahba, W., Abdalla, M., Mohamed, A. & Allam, A. (2014). A uni-planar microstrip CSRR metamaterial antenna: 2014 IEEE AP-S International Antenna and Propagation Symposium Digest, Memphis, USA (pp. 545–546).

  24. Abdalla, M. & Sadek, F. H. (2015). Compact triple-band left-handed antenna for GSM/WiMAX applications: 2015 9th International Congress on Advanced Electromagnetic Material in Microwave and Optics, 7–12 September, UK (pp. 295–297).

  25. Abdalla, M. & Sadek, F. (2015). Hybrid termination of metamaterial CRLH antennas: 2015 IEEE AP-S International Antenna and Propagation Symposium Digest, Vancouver, Canada (pp. 1188–1189).

  26. Abdalla, M., Karimian, S. & Hu, Z. (2014). Dual band spurious-free SIR metamaterial antenna: 2014 IEEE AP-S International Antenna and Propagation Symposium Digest, Memphis, USA (pp. 1005–1006).

  27. Erentok, A., & Ziolkowski, R. W. (2008). Metamaterial-inspired efficient electrically small antennas. IEEE Transactions on Antennas and Propagation, 56(3), 691–707.

    Article  Google Scholar 

  28. Ziolkowski, R. W., Jin, P., & Lin, C.-C. (2011). Metamaterial-inspired engineering of antennas. Proceedings of the IEEE, 99(10), 1720–1731.

    Article  Google Scholar 

  29. Tang, M.-C., & Ziolkowski, R. W. (2013). Compact, two-element array with high broadside directivity. IET Microwaves, Antennas and Propagation, 7(8), 663–671.

    Article  Google Scholar 

  30. Jin, P., & Ziolkowski, R. W. (2010). Multiband extensions of the electrically small, near-field resonant parasitic Z antenna. IET Microwaves, Antennas and Propagation, 4(8), 1016–1025.

    Article  Google Scholar 

  31. Yan, S., & Vandenbosch, G. A. E. (2014). Zeroth-order resonant circular patch antenna based on periodic structures. IET Microwaves, Antennas and Propagation, 8(15), 1432–1439.

    Article  Google Scholar 

  32. Abdalla, M. A. & Hu, Z. (2011). Compact and tunable metamaterial antenna for multi-band wireless communication applications: IEEE AP-S International Antenna and Propagation Symposium Digest, Spokane, USA (pp. 2951–2953).

  33. Abdalla, M. (2014). A dual mode CRLH TL metamaterial antenna: 2014 IEEE AP-S International Antenna and Propagation Symposium Digest, Memphis, USA (pp. 793–794).

  34. Abdalla, M. & Ibrahim, A. (2013). Design of close, compact, and high isolation meta-material MIMO antennas: 2013 IEEE AP-S International Antenna and Propagation Symposium Digest, Orlando, USA (pp. 186–187).

  35. Abdalla, M. A., & Ibrahim, A. A. (2013). Compact and closely spaced meta-material MIMO antenna with high isolation for wireless applications. IEEE Wireless Propagation Letter, 12, 1452–1455.

    Article  Google Scholar 

  36. Ibrahim, A. A., & Abdalla, M. A. (2016). CRLH MIMO antenna with reversal configuration. AEÜ—International Journal of Electronics and Communications, 70(7), 1134–1141.

    Article  Google Scholar 

  37. Blanch, S., Romeu, J., & Corbella, I. (2003). Exact representation of antenna system diversity performance from input parameter description. Electronics Letters, 39(9), 705–707.

    Article  Google Scholar 

  38. Rosengren, K. & Kildal, P.-S. (2006). Radiation efficiency, correlation, diversity gain and capacity of a six monopole antenna array for a MIMO system: Theory, simulation and measurement in reverberation chamber. IEE Proceedings Microwaves, Antennas and Propagation, 153(6), 7–16.

  39. Manteghi, M., & Rahmat-Samii, Y. (2005). Multiport characteristics of a wide-band cavity backed annular patch antenna for multipolarization operations. IEEE Transactions on Antennas and Propagation, 53(1), 466–474.

    Article  Google Scholar 

  40. Chae, S. H., Oh, S., & Park, S.-O. (2007). Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna. IEEE Antennas Wireless Propagation Letters, 6, 122–125.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Abdalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdalla, M.A., Ibrahim, A.A. Design and Performance Evaluation of Metamaterial Inspired MIMO Antennas for Wireless Applications. Wireless Pers Commun 95, 1001–1017 (2017). https://doi.org/10.1007/s11277-016-3809-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3809-4

Keywords

Navigation