Skip to main content
Log in

Two Stage Grid Classification Based Algorithm for the Identification of Fields Under a Wireless Sensor Network Monitored Area

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The use of scheduling of sensors to maximize the lifetime of a wireless sensor network (WSN) requires the sensors to be divided into the maximum possible number of disjoint complete coverage sets. The maximum possible number is determined by the most sparsely covered region, called critical region. To identify the critical region, the monitored area is divided into fields. This paper presents a novel two stage grid classification based algorithm to identify fields in a WSN monitored area divided into grids with a sensor membership vector (SMV) created for each grid. The grids having equal length of the SMV are clubbed to form groups. Within a group, the grids having identical SMV are further aggregated to form fields. The execution time of the proposed algorithm is improved by comparing the SMV of a grid with those of the other grids in its respective group only instead of all the grids in the monitored area. As long as the number of grids remains unchanged, the execution time is also less sensitive to change in the number and sensing ranges of the deployed sensors because the SMVs of the grids are compared instead of the grids covered by each sensor. The results of the algorithm are validated by comparing its performance with the conventional algorithms. The effect of variation in the number and sensing ranges of the deployed sensors on the fields formed, the sensors covering the critical field and the lifetime of the WSN have also been analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Biagioni, E., & Giordano, S. (2013). Topics in ad hoc and sensor networks [series editorial]. IEEE Communications Magazine, 51(7), 106.

    Article  Google Scholar 

  2. Zhao, J., Xi, W., He, Y., Liu, Y., Li, X.-Y., Mo, L., et al. (2013). Localization of wireless sensor networks in the wild: pursuit of ranging quality. IEEE/ACM Transactions on Networking, 21(1), 311–323.

    Article  Google Scholar 

  3. Ojha, T., Khatua, M., & Misra, S. (2013). Tic-Tac-Toe-Arch: A self-organising virtual architecture for underwater sensor networks. IET Wireless Sensor Systems, 3(4), 307–316.

    Article  Google Scholar 

  4. Matic, A., Osmani, V., & Mayora, O. (2013). Trade-offs in monitoring social interactions. IEEE Communications Magazine, 51(7), 114–121.

    Article  Google Scholar 

  5. Martin, I., O’Farrell, T., Aspey, R., Edwards, S., James, T., Loskot, P., et al. (2014). A high-resolution sensor network for monitoring glacier dynamics. IEEE Sensors Journal, 14(11), 3926–3931.

    Article  Google Scholar 

  6. Kampianakis, E., Kimionis, J., Tountas, K., Konstantopoulos, C., Koutroulis, E., & Bletsas, A. (2014). Wireless environmental sensor networking with analog scatter radio and timer principles. IEEE Sensors Journal, 14(10), 3365–3376.

    Article  Google Scholar 

  7. Gruden, M., Jobs, M., & Rydberg, A. (2014). Empirical tests of wireless sensor network in jet engine including characterization of radio wave propagation and fading. IEEE Antennas and Wireless Propagation Letters, 13, 762–765.

    Article  Google Scholar 

  8. Bhuiyan, M., Wang, G., Cao, J., & Wu, J. (2015). Deploying wireless sensor networks with fault-tolerance for structural health monitoring. IEEE Transactions on Computers, 64(2), 382–395.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C., Yan, J., Lu, N., Wang, Y., Yang, X., & Guan, X. (2015). Ubiquitous monitoring for industrial cyber-physical systems over relay- assisted wireless sensor networks. IEEE Transactions on Emerging Topics in Computing, 3(3), 352–362.

    Article  Google Scholar 

  10. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  11. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  12. Akyildiz, I. F., Melodia, T., & Chowdhury, K. R. (2007). A survey on wireless multimedia sensor networks. Computer Networks, 51(4), 921–960.

    Article  Google Scholar 

  13. Zheng, J., & Jamalipour, A. (2009). Wireless sensor networks – a networking perspective. New Jersey: Wiley.

    MATH  Google Scholar 

  14. Anastasi, G., Conti, M., Francesco, M. D., & Passarella, A. (2009). Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks, 7(3), 537–568.

    Article  Google Scholar 

  15. Cardei, M., & Du, D.-Z. (2005). Improving wireless sensor network lifetime through power aware organization. Wireless Networks, 11(3), 333–340.

    Article  Google Scholar 

  16. Hu, X.-M., Zhang, J., Yu, Y., Chung, H. S.-H., Li, Y.-L., Shi, Y.-H., et al. (2010). Hybrid genetic algorithm using a forward encoding scheme for lifetime maximization of wireless sensor networks. IEEE Transactions on Evolutionary Computation, 14(5), 766–781.

    Article  Google Scholar 

  17. Zhu, C., Leung, V., Yang, L., & Shu, L. (2015). Collaborative location-based sleep scheduling for wireless sensor networks integratedwith mobile cloud computing. IEEE Transactions on Computers, 64(7), 1844–1856.

    Article  MathSciNet  MATH  Google Scholar 

  18. Hsueh, C.-T., Wen, C.-Y., & Ouyang, Y.-C. (2015). A secure scheme against power exhausting attacks in hierarchical wireless sensor networks. IEEE Sensors Journal, 15(6), 3590–3602.

    Article  Google Scholar 

  19. Tashtarian, F., Moghaddam, M. H. Y., Sohraby, K., & Effati, S. (2015). On maximizing the lifetime of wireless sensor networks in event-driven applications with mobile sinks. IEEE Transactions on Vehicular Technology, 64(7), 3177–3189.

    Google Scholar 

  20. Hoang, D. C., Yadav, P., Kumar, R., & Panda, S. (2014). Real-time implementation of a harmony search algorithm-based clustering protocol for energy-efficient wireless sensor networks. IEEE Transactions on Industrial Informatics, 10(1), 774–783.

    Article  Google Scholar 

  21. Cotuk, H., Bicakci, K., Tavli, B., & Uzun, E. (2014). The impact of transmission power control strategies on lifetime of wireless sensor networks. IEEE Transactions on Computers, 63(11), 2866–2879.

    Article  MathSciNet  MATH  Google Scholar 

  22. Jeon, J.-H., Byun, H.-J., & Lim, J.-T. (2013). Joint contention and sleep control for lifetime maximization in wireless sensor networks. IEEE Communications Letters, 17(2), 269–272.

    Article  Google Scholar 

  23. Han, K., Luo, J., Liu, Y., & Vasilakos, A. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  24. Sangwan, A., & Singh, R. P. (2014). Survey on coverage problems in wireless sensor networks. Wireless Personal Communications, 80(4), 1475–1500.

    Article  Google Scholar 

  25. Jamali, S., & Hatami, M. (2015). Coverage aware scheduling in wireless sensor networks: An optimal placement approach. Wireless Personal Communications, 85(3), 1689–1699.

    Article  Google Scholar 

  26. Ramar, R., & Shanmugasundaram, R. (2015). Connected k-coverage topology for area monitoring in wireless sensor networks. Wireless Personal Communications, 84(2), 1051–1067.

    Article  Google Scholar 

  27. Wang, Y.-C., Hu, C.-C., & Tseng, Y.-C. (2008). Efficient placement and dispatch of sensors in a wireless sensor network. IEEE Transactions on Mobile Computing, 7(2), 262–274.

    Article  Google Scholar 

  28. Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremental self deployment algorithm for mobile sensor networks. Autonomous Robots, 13(2), 113–126.

    Article  MATH  Google Scholar 

  29. Heo, N., & Varshney, P. K. (2005). Energy-efficient deployment of intelligent mobile sensor networks. IEEE Transactions on Systems, Man, Cybernetics, Part A: Systems and Humans, 35(1), 78–92.

    Article  Google Scholar 

  30. Lin, J.-W., & Chen, Y.-T. (2008). Improving the coverage of randomized scheduling in wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 4807–4812.

    Article  Google Scholar 

  31. Kumar, S., & Lobiyal, D. K. (2013). Impact of interference in wireless sensor networks. Wireless Personal Communications, 74(2), 683–701.

    Article  Google Scholar 

  32. Mostafaei, H., & Meybodi, M. R. (2012). Maximizing lifetime of target coverage in wireless sensor networks usng learning automata. Wireless Personal Communications, 71(2), 1461–1477.

    Article  Google Scholar 

  33. Mohamadi, H., Ismail, A. S., & Salleh, S. (2013). Solving target coverage problem using cover sets in wireless sensor networks based on learning automata. Wireless Personal Communications, 75(1), 447–463.

    Article  Google Scholar 

  34. Ashouri, M., Zali, Z., Mousvi, S., & Hashemi, M. (2012). New optimal solution to disjoint set k-coverage for lifetime extension in wireless sensor networks. IET Wireless Sensor Systems, 2(1), 31–39.

    Article  Google Scholar 

  35. Mostafaei, H., & Meybodi, M. R. (2014). An energy efficient barrier coverage algorithm for wireless sensor networks. Wireless Personal Communications, 77(3), 2099–2115.

    Article  Google Scholar 

  36. Singh, S., Chand, S., Kumar, R., & Kumar, B. (2013). Optimal sensor deployment for WSNs in grid environment. Electronics Letters, 49(16), 1040–1041.

    Article  Google Scholar 

  37. Derr, K., & Manic, M. (2013). Wireless sensor network configuration—Part I: Mesh simplification for centralized algorithms. IEEE Transactions on Industrial Informatics, 9(3), 1717–1727.

    Article  Google Scholar 

  38. Huang, C.-F., & Tseng, Y.-C. (2005). The coverage problem in a wireless sensor network. Mobile Networks and Applications, 10(4), 519–528.

    Article  Google Scholar 

  39. Chakrabarty, K., Iyengar, S. S., Qi, H., & Cho, E. (2002). Grid coverage for surveillance and target location in distributed sensor networks. IEEE Transactions on Computers, 51(12), 1448–1453.

    Article  MathSciNet  Google Scholar 

  40. Dhillon, S.S., & Chakrabarty, K. (2003). Sensor placement for effective coverage and surveillance in distributed sensor networks. In Proceedings of IEEE wireless communications and networking conference, WCNC 2003 (Vol. 3, pp. 1609–1614). LA, USA.

  41. Khanjary, M., Sabaei, M., & Meybodi, M. R. (2014). Critical density for coverage and connectivity in two-dimensional aligned-orientation directional sensor networks using continuum percolation. IEEE Sensors Journal, 14(8), 2856–2863.

    Article  Google Scholar 

  42. Wang, X., & Wang, S. (2011). Hierarchical deployment optimization for wireless sensor networks. IEEE Transactions on Mobile Computing, 10(7), 1028–1041.

    Article  Google Scholar 

  43. Kulkarni, R., & Venayagamoorthy, G. (2010). Bio-inspired algorithms for autonomous deployment and localization of sensor nodes. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 40(6), 663–675.

    Article  Google Scholar 

  44. Al-Hamadi, H., & Chen, I.-R. (2013). Redundancy management of multipath routing for intrusion tolerance in heterogeneous wireless sensor networks. IEEE Transactions on Network and Service Management, 10(2), 189–203.

    Article  Google Scholar 

  45. Chang, C.-Y., & Chang, H.-R. (2008). Energy-aware node placement, topology control and MAC scheduling for wireless sensor networks. Computer Networks, 52(11), 2189–2204.

    Article  MATH  Google Scholar 

  46. Leung, H., Chandana, S., & Wei, S. (2008). Distributed sensing based on intelligent sensor networks. IEEE Circuits and Systems Magazine, 8(2), 38–52.

    Article  Google Scholar 

  47. Iyengar, S. S., Wu, H.-C., Balakrishnan, N., & Chang, S. Y. (2007). Biologically inspired cooperative routing for wireless mobile sensor networks. IEEE Systems Journal, 1(1), 29–37.

    Article  Google Scholar 

  48. Cui, S., Madan, R., Goldsmith, A. J., & Lall, S. (2007). Cross-layer energy and delay optimization in small-scale sensor networks. IEEE Transactions on Wireless Communication, 6(10), 3688–3699.

    Article  Google Scholar 

  49. Yu, Y., Prasanna, V. K., & Krishnamachari, B. (2006). Energy minimization for real-time data gathering in wireless sensor networks. IEEE Transactions on Wireless Communication, 5(11), 3087–3096.

    Article  Google Scholar 

  50. Cardei, M., & Wu, J. (2006). Energy-efficient coverage problems in wireless ad-hoc sensor networks. Computer Communications, 29(4), 413–420.

    Article  Google Scholar 

  51. Baek, S. J., Veciana, G. D., & Su, X. (2004). Minimizing energy consumption in large-scale sensor networks through distributed data compression and hierarchical aggregation. IEEE Journal on Selected Areas in Communication, 22(6), 1130–1140.

    Article  Google Scholar 

  52. Slijepcevic, S., & Potkonjak, M. (2001). Power efficient organization of wireless sensor networks. In Proceedings of IEEE international conference on communications (Vol. 2, pp. 472–476). Helsinki.

  53. Schurgers, C., Tsiatsis, V., Ganeriwal, S., & Srivastava, M. (2002). Optimizing sensor networks in the energy-latency-density design space. IEEE Transactions on Mobile Computing, 1(1), 70–80.

    Article  Google Scholar 

  54. Raghunathan, V., Schurghers, C., Park, S., & Srivastava, M. (2002). Energy-aware wireless microsensor networks. IEEE Signal Processing Magazine, 19(2), 40–50.

    Article  Google Scholar 

  55. Lin, Y., Zhang, J., Chung, H.-H., Ip, W., Li, Y., & Shi, Y.-H. (2012). An ant colony optimization approach for maximizing the lifetime of heterogeneous wireless sensor networks. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 42(3), 408–420.

    Article  Google Scholar 

  56. Wang, L., & Xiao, Y. (2006). A survey of energy-efficient scheduling mechanisms in sensor networks. Mobile Networks and Applications, 11(5), 723–740.

    Article  Google Scholar 

  57. Funke, S., Kesselman, A., Kuhn, F., Lotker, Z., & Segal, M. (2007). Improved approximation algorithms for connected sensor cover. Wireless Networks, 13(2), 153–164.

    Article  Google Scholar 

  58. Abrams, Z., Goel, A., & Plotkin, S. (2004). Set k-cover algorithms for energy efficient monitoring in wireless sensor networks. In: Proceedings of 3rd international symposium on information processing in sensor networks (pp. 424–432). Berkley, USA.

  59. Cardei, M., MacCallum, D., Cheng, M. X., Min, M., Jia, X., Li, D., et al. (2002). Wireless sensor networks with energy efficient organization. Journal of Interconnection Networks, 3(3–4), 213–229.

    Article  Google Scholar 

  60. Benini, L., Castelli, G., Macii, A., Macii, E., Poncino, M., & Scarsi, R. (2000). A discrete-time battery model for high-level power estimation. In: Proceedings of design, automation and test in Europe conference and exhibition (pp. 35–39). Paris.

  61. Williams, R. (1979). The geometrical foundation of natural structure: A source book of design. New York: Dover.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tripatjot Singh Panag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panag, T.S., Dhillon, J.S. Two Stage Grid Classification Based Algorithm for the Identification of Fields Under a Wireless Sensor Network Monitored Area. Wireless Pers Commun 95, 1055–1074 (2017). https://doi.org/10.1007/s11277-016-3813-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3813-8

Keywords

Navigation