Skip to main content
Log in

A Block Based Reversible Data Hiding Scheme for Digital Images Using Optimal Value Computation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recently, more importance is given to reversible data hiding (RDH) schemes because it restores original cover image without loss after the secret data is extracted and it is useful in authentication and integrity checking. In this paper, a novel RDH scheme for digital images is proposed that has high capacity with low distortion. The cover image is divided into blocks and all the pixels in the block are converted into odd value or even value by computing the optimal value of the block. The optimal value is mean, median, max histogram or min–max average which is very nearer to the pixels in the block. Secret data is directly embedded into blocks using odd even property. In the receiving end, after extracting secret data cover image can be recovered to its original form by computing the same optimal value. The proposed scheme is tested with several monochrome images and color images. The experimental results reveal that the proposed scheme has high hiding capacity with low distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yongjian, H., Lee, H.-K., & Li, J. (2009). DE-based reversible data hiding with improved overflow location map. IEEE Transactions on Circuits and Systems for Video Technology, 19, 250–260.

    Article  Google Scholar 

  2. Wu, H.-C., Lee, C.-C., Tsai, C.-S., Chu, Y.-P., & Chen, H.-R. (2009). A high capacity reversible data hiding scheme with edge prediction and difference expansion. Journal of Systems and Software, 82, 1966–1973.

    Article  Google Scholar 

  3. Lee, C.-F., Chen, H.-L., & Tso, H.-K. (2010). Embedding capacity raising in reversible data hiding based on prediction of difference expansion. Journal of Systems and Software, 83, 1864–1872.

    Article  Google Scholar 

  4. Bo, O., Li, X., Zhao, Y., & Ni, R. (2013). Reversible data hiding based on PDE predictor. Journal of Systems and Software, 86, 2700–2709.

    Article  Google Scholar 

  5. Leung, H. Y., Cheng, L. M., Liu, F., & Fu, Q. K. (2013). Adaptive reversible data hiding based on block median preservation and modification of prediction errors. Journal of Systems and Software, 86, 2204–2219.

    Article  Google Scholar 

  6. Bo, O., Li, X., Zhao, Y., & Ni, R. (2014). Reversible data hiding using invariant pixel-value-ordering and prediction-error expansion. Signal Processing: Image Communication, 29, 760–772.

    Google Scholar 

  7. Luo, L., Chen, Z., Chen, M., Zeng, X., & Xiong, Z. (2010). Reversible image watermarking using interpolation technique. IEEE Transactions on Information Forensics and Security, 5, 187–193.

    Article  Google Scholar 

  8. Hong, W., & Chen, T.-S. (2011). Reversible data embedding for high quality images using interpolation and reference pixel distribution mechanism. Journal of Visual Communication and Image Representation, 22, 131–140.

    Article  Google Scholar 

  9. Tai, W.-L., Yeh, C.-M., & Chang, C.-C. (2009). Reversible data hiding based on histogram modification of pixel differences. IEEE Transactions on Circuits and Systems for Video Technology, 19, 906–910.

    Article  Google Scholar 

  10. Kim, K.-S., Lee, M.-J., Lee, H.-Y., & Lee, H.-K. (2009). Reversible data hiding exploiting spatial correlation between sub-sampled images. Pattern Recognition, 42, 3083–3096.

    Article  MATH  Google Scholar 

  11. Yang, C.-H., & Tsai, M.-H. (2010). Improving histogram-based reversible data hiding by interleaving predictions. IET Image Processing, 4, 223–234.

    Article  Google Scholar 

  12. Hong, W., & Chen, T.-S. (2010). A local variance-controlled reversible data hiding method using prediction and histogram-shifting. Journal of Systems and Software, 83, 2653–2663.

    Article  Google Scholar 

  13. Zhao, Z., Luo, H., Zhe-Ming, L., & Pan, J.-S. (2011). Reversible data hiding based on multilevel histogram modification and sequential recovery. International Journal of Electronics Communication and Computer Technology, 65, 814–826.

    Article  Google Scholar 

  14. Coatrieux, G., Pan, W., Cuppens-Boulahia, N., Cuppens, F., & Roux, C. (2013). Reversible watermarking based on invariant image classification and dynamic histogram shifting. IEEE Transactions on Information Forensics and Security, 8, 111–120.

    Article  Google Scholar 

  15. Li, X., Zhang, W., Gui, X., & Yang, B. (2015). Efficient reversible data hiding based on multiple histograms modification. IEEE Transactions on Information Forensics and Security, 10, 2016–2027.

    Article  Google Scholar 

  16. Bouslimi, D., Coatrieux, G., Cozic, M., & Roux, C. (2012). A joint encryption/watermarking system for verifying the reliability of medical images. IEEE Transactions on Information Technology in Biomedicine, 16, 891–899.

    Article  Google Scholar 

  17. Zhang, X. (2012). Separable reversible data hiding in encrypted images. IEEE Transactions on Information Forensics and Security, 7, 826–832.

    Article  Google Scholar 

  18. Ma, K., Zhang, W., Zhao, X., Nenghai, Yu., & Li, F. (2013). Reversible data hiding in encrypted images by reserving room before encryption. IEEE Transactions on Information Forensics and Security, 8, 553–562.

    Article  Google Scholar 

  19. Zhang, W., Ma, K., & Yu, N. (2014). Reversibility improved data hiding in encrypted images. Signal Processing, 94, 118–127.

    Article  Google Scholar 

  20. Qian, Z., Zhang, X., & Wang, S. (2014). Reversible data hiding in encrypted JPEG bitstream. IEEE Transactions on Multimedia, 16, 1486–1491.

    Article  Google Scholar 

  21. Zhou, J., Sun, W., Dong, L., Liu, X., Au, O. C., & Tang, Y. Y. (2016). Secure reversible image data hiding over encrypted domain via key modulation. IEEE Transactions on Circuits and Systems for Video Technology, 26, 441–452.

    Google Scholar 

  22. Liu, T.-Y., & Tsai, W.-H. (2010). Generic lossless visible watermarking: A new approach. IEEE Transactions on Image Processing, 19, 1224–1235.

    Article  MathSciNet  Google Scholar 

  23. Lin, P.-Y., Chen, Y.-H., Chang, C.-C., & Lee, J.-S. (2013). Contrast-adaptive removable visible watermarking (CARVW) mechanism. Image and Vision Computing, 31, 311–321.

    Article  Google Scholar 

  24. Yang, H., & Yin, J. (2015). A secure removable visible watermarking for BTC compressed images. Multimedia Tools and Applications, 74, 1725–1739.

    Article  Google Scholar 

  25. Zhang, X., Wang, Z., Yu, J., & Qian, Z. (2015). Reversible visible watermark embedded in encrypted domain. In Proceedings of IEEE international conference signal and information processing (pp. 826–830).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. R. Denslin Brabin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brabin, D.R.D., Perinbam, J.R.P. & Meganathan, D. A Block Based Reversible Data Hiding Scheme for Digital Images Using Optimal Value Computation. Wireless Pers Commun 94, 2583–2596 (2017). https://doi.org/10.1007/s11277-016-3817-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3817-4

Keywords

Navigation