Skip to main content
Log in

A Survey on Cooperative MAC Protocols in IEEE 802.11 Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The concept of cooperative communication appears as a beneficial method that can address key challenges faced by wireless networks. Cooperative techniques in IEEE 802.11 MAC protocols have thus received significant attention both in theoretical and practical aspects. In this survey article, we provide an overview of existing research on cooperative MAC protocols in the IEEE 802.11 standard. We specially focus on protocol’s behavior and propose a novel architectural model for cooperation. We present a classification of cooperative relay based MAC protocols, along model desired categories, and review representative cooperative protocols for 802.11. We further evaluate the operational issues of cooperative protocols in term of architecture, compatibility and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. IEEE Std 802.11g-2003. (2003). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Further higher data rate extension in the 2.4 GHz band.

  2. IEEE Std 802.11n-2009. (2009). Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: Enhancements for higher throughput.

  3. IEEE Std. 802.11b-1999 (1999) Part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications: High-speed physical layer extension in the 2.4 GHz band.

  4. IEEE Std. 802.11e-2002. (2002). Part 11: Wireless medium access control (MAC) and physical layer (PHY) specifications: Medium access control (MAC) enhancements for quality of service (QoS).

  5. IEEE Std. 802.11i-2004. (2004). Part 11: Wireless medium access control (MAC) and physical layer (PHY) specifications, Amendment 6: Medium access control (MAC) security enhancements.

  6. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity. Part I. System description. IEEE Transactions on Communications, 51(11), 1927–1938.

    Article  Google Scholar 

  7. Sendonaris, A., Erkip, E., & Aazhang, B. (2003). User cooperation diversity Part II Implementation aspects and performance analysis. IEEE Transactions on Communications, 51(11), 1939–1948.

    Article  Google Scholar 

  8. Laneman, J. N., Tse, D. N., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  9. Laneman, J. N., & Wornell, G. W. (2000). Energy-efficient antenna sharing and relaying for wireless networks. In Wireless communications and networking conference, 2000. IEEE (Vol. 1, pp. 7–12).

  10. Kramer, G., Gastpar, M., & Gupta, P. (2005). Cooperative strategies and capacity theorems for relay networks. IEEE Transactions on Information Theory, 51(9), 3037–3063.

    Article  MathSciNet  MATH  Google Scholar 

  11. Borade, S., Zheng, L., & Gallager, R. (2007). Amplify-and-forward in wireless relay networks: Rate, diversity, and network size. IEEE Transactions on Information Theory, 53(10), 3302–3318.

    Article  MathSciNet  MATH  Google Scholar 

  12. Cover, T. M., & Gamal, A. E. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 25(5), 572–584.

    Article  MathSciNet  MATH  Google Scholar 

  13. Bertsekas, D. P., Gallager, R. G., & Humblet, P. (1992). Data networks (Vol. 2). New Jersey: Prentice-Hall International.

    MATH  Google Scholar 

  14. Ancillotti, E., Bruno, R., & Conti, M. (2009). Design and performance evaluation of throughput-aware rate adaptation protocols for IEEE 802.11 wireless networks. Performance Evaluation, 66(12), 811–825.

    Article  Google Scholar 

  15. Holland, G., Vaidya, N., & Bahl, P. (2001). A rate-adaptive MAC protocol for multi-hop wireless networks. In Proceedings of the 7th annual international conference on Mobile computing and networking (pp. 236–251). ACM.

  16. Kamerman, A., & Monteban, L. (1997). WaveLAN®-II: A high-performance wireless LAN for the unlicensed band. Bell Labs Technical Journal, 2(3), 118–133.

    Article  Google Scholar 

  17. Lacage, M., Manshaei, M. H., & Turletti, T. (2004). IEEE 802.11 rate adaptation: A practical approach. In Proceedings of the 7th ACM international symposium on Modeling, analysis and simulation of wireless and mobile systems (pp. 126–134). ACM.

  18. Qiao, D., & Choi, S. (2001). Goodput enhancement of IEEE 802.11 a wireless LAN via link adaptation. In IEEE international conference on communications, 2001 (ICC 2001), (Vol. 7, pp. 1995–2000).

  19. Qiao, D., Choi, S., & Shin, K. G. (2002). Goodput analysis and link adaptation for IEEE 802.11 a wireless LANs. IEEE Transactions on Mobile Computing, 1(4), 278–292.

    Article  Google Scholar 

  20. Rong, Y., Teymorian, A. Y., Ma, L., Cheng, X., & Choi, H. A. (2009). A novel rate adaptation scheme for 80211 networks. IEEE Transactions on Wireless Communications, 8(2), 862–870.

    Article  Google Scholar 

  21. Sadeghi, B., Kanodia, V., Sabharwal, A., & Knightly, E. (2002). Opportunistic media access for multirate ad hoc networks. In Proceedings of the 8th annual international conference on Mobile computing and networking (pp. 24–35). ACM.

  22. Wang, L. C., Lin, Y. W., & Liu, W. C. (2004). Cross-layer goodput analysis for rate adaptive IEEE 802.11 a WLAN in the generalized Nakagami fading channel. In 2004 IEEE international conference on communications, (Vol. 4, pp. 2312–2316).

  23. Wang, H., & Tsou, C. C. (2009). A rate adaptation scheme with loss differentiation for wlan. In Ninth international conference on hybrid intelligent systems, 2009 (HIS’09), (Vol. 1, pp. 108–112).

  24. Tunc, M. A. (2005). Service differentiation via cooperative MAC protocol (SD-MAC), Doctoral dissertation. Wichita State University.

  25. Liu, P., Tao, Z., Lin, Z., Erkip, E., & Panwar, S. (2006). Cooperative wireless communications: a cross-layer approach. Wireless Communications, IEEE, 13(4), 84–92.

    Article  Google Scholar 

  26. Le, L., & Hossain, E. (2008). Cross-layer optimization frameworks for multihop wireless networks using cooperative diversity. IEEE Transactions on Wireless Communications, 7(7), 2592–2602.

    Article  Google Scholar 

  27. Zhang, Q., & Zhang, Y. Q. (2008). Cross-layer design for QoS support in multihop wireless networks. Proceedings of the IEEE, 96(1), 64–76.

    Article  Google Scholar 

  28. Gomez-Cuba, F., Asorey-Cacheda, R., & Gonzalez-Castano, F. J. (2012). A survey on cooperative diversity for wireless networks. Communications Surveys & Tutorials, IEEE, 14(3), 822–835.

    Google Scholar 

  29. Ju, P., Song, W., & Zhou, D. (2013). Survey on cooperative medium access control protocols. IET Communications, 7(9), 893–902.

    Article  Google Scholar 

  30. Zhuang, W., & Zhou, Y. (2013). A survey of cooperative MAC protocols for mobile communication networks. Journal Internet Technology, 14(4), 541–559.

    Google Scholar 

  31. Silva, B. M., Rodrigues, J. J., Kumar, N., & Han, G. (2015). Cooperative strategies for challenged networks and applications: A survey. IEEE Systems Journal, PP(99), 1–12.

  32. Xu, K., Gerla, M., & Bae, S. (2002). How effective is the IEEE 802.11 RTS/CTS handshake in ad hoc networks. In Global telecommunications conference, 2002 (GLOBECOM’02), (Vol. 1, pp. 72–76).

  33. Foschini, G. J. (1996). Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1(2), 41–59.

    Article  Google Scholar 

  34. Tarokh, V., Jafarkhani, H., & Calderbank, A. R. (1999). Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, 45(5), 1456–1467.

    Article  MathSciNet  MATH  Google Scholar 

  35. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate wireless communication: Performance criterion and code construction. IEEE Transactions on Information Theory, 44(2), 744–765.

    Article  MathSciNet  MATH  Google Scholar 

  36. Telatar, I. E. (1999). Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 10(6), 585–595.

    Article  MathSciNet  Google Scholar 

  37. Liang, J., & Liang, Q. (2008). Channel selection algorithms in virtual mimo sensor networks. In Proceedings of the 1st ACM international workshop on Heterogeneous sensor and actor networks, (pp. 73–80). ACM.

  38. Van der Meulen, E. C. (1968). Transmission of information in a T-terminal discrete memoryless channel. Oakland: University of California.

    Google Scholar 

  39. Van Der Meulen, E. C. (1971). Three-terminal communication channels. Advances in Applied Probability, 3(1), 120–154.

  40. Laneman, J. N., Wornell, G. W., & Tse, D. N. (2001). An efficient protocol for realizing cooperative diversity in wireless networks. In Proceedings of 2001 IEEE international symposium on information theory, 2001, (p. 294).

  41. IEEE Std 802.16j-2009. (2009). IEEE standard for local and metropolitan area networks. Part 16: Air interface for broadband wireless access systems—Multihop relay specification.

  42. IEEE Std 802.11-2016: IEEE 802.11 Working group project, http://grouper.ieee.org/groups/802/11/Reports/802.11_Timelines.htm.

  43. Kephart, J. O., & Chess, D. M. (2003). The vision of autonomic computing. Computer, 36(1), 41–50.

    Article  MathSciNet  Google Scholar 

  44. Shankar, S., Chou, C. T., & Ghosh, M. (2005). Cooperative communication MAC (CMAC)-a new MAC protocol for next generation wireless LANs. In 2005 international conference on wireless networks, communications and mobile computing, (Vol. 1, pp. 1–6).

  45. Moh, S., Yu, C., Park, S. M., Kim, H. N., & Park, J. (2007). CD-MAC: Cooperative diversity MAC for robust communication in wireless ad hoc networks. In IEEE International Conference on Communications, 2007 (ICC’07), (pp. 3636–3641).

  46. Dianati, M., Ling, X., Naik, K., & Shen, X. S. (2006). A node-cooperative ARQ scheme for wireless ad hoc networks. IEEE Transactions on Vehicular Technology, 55(3), 1032–1044.

    Article  Google Scholar 

  47. Alonso-Zárate, J., Kartsakli, E., Verikoukis, C., & Alonso, L. (2008). Persistent RCSMA: A MAC protocol for a distributed cooperative ARQ scheme in wireless networks. EURASIP Journal on Advances in Signal Processing, 2008(1), 817401.

    Article  Google Scholar 

  48. Cetinkaya, C., & Orsun, F. (2004). Cooperative medium access protocol for dense wireless networks. In The third annual Mediterranean ad hoc networking workshop-Med Hoc Net 2004.

  49. Zhu, H., & Cao, G. (2006). rDCF: A relay-enabled medium access control protocol for wireless ad hoc networks. IEEE Transactions on Mobile Computing, 5(9), 1201–1214.

    Article  Google Scholar 

  50. Liu, P., Tao, Z., Narayanan, S., Korakis, T., & Panwar, S. S. (2007). CoopMAC: A cooperative MAC for wireless LANs. IEEE Journal on Selected Areas in Communications, 25(2), 340–354.

    Article  Google Scholar 

  51. Jibukumar, M. G., Datta, R., & Biswas, P. K. (2010). CoopMACA: A cooperative MAC protocol using packet aggregation. Wireless Networks, 16(7), 1865–1883.

    Article  Google Scholar 

  52. Pathmasuritharam, J. S., Das, A., & Gupta, A. K. (2005). Efficient multi-rate relaying (EMR) MAC protocol for ad hoc networks. In 2005 IEEE International Conference on Communications, 2005 (ICC 2005), (Vol. 5, pp. 2947–2951).

  53. Tan, K., Wan, Z., Zhu, H., & Andrian, J. (2007). CODE: Cooperative medium access for multirate wireless ad hoc network. In 4th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2007 (SECON’07), (pp. 1–10).

  54. Agarwal, N., ChanneGowda, D., Kannan, L. N., Tacca, M., & Fumagalli, A. (2007). IEEE 802.11b cooperative protocols: a performance study. In NETWORKING 2007, Ad Hoc and sensor networks, wireless networks, next generation internet (pp. 415–426). Berlin Heidelberg: Springer.

  55. Cetin, B. (2006). Opportunistic relay protocol for IEEE 802.11 WLANs. SICS Research Report.

  56. Zou, S., Li, B., Wu, H., Zhang, Q., Zhu, W., & Cheng, S. (2006). A relay-aided media access (RAMA) protocol in multirate wireless networks. IEEE Transactions on Vehicular Technology, 55(5), 1657–1667.

    Article  Google Scholar 

  57. Hu, Z., & Tham, C. K. (2010). CCMAC: coordinated cooperative MAC for wireless LANs. Computer Networks, 54(4), 618–630.

    Article  MATH  Google Scholar 

  58. Zou, Y., Wang, X., & Shen, W. (2013). Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE Journal on Selected Areas in Communications, 31(10), 2099–2111.

    Article  Google Scholar 

  59. Li, S. Y. R., Yeung, R. W., & Cai, N. (2003). Linear network coding. IEEE Transactions on Information Theory, 49(2), 371–381.

    Article  MathSciNet  MATH  Google Scholar 

  60. Jing, Y., & Hassibi, B. (2006). Distributed space-time coding in wireless relay networks. IEEE Transactions on Wireless Communications, 5(12), 3524–3536.

    Article  Google Scholar 

  61. An, D., Kim, Y., Yoon, H., & Yeom, I. (2014). Partition and cooperation for crowded multi-rate WLANs. Wireless Personal Communications, 79(2), 1511–1538.

    Article  Google Scholar 

  62. Sami, M., Noordin, N. K., Hashim, F., Subramaniam, S., & Akbari-Moghanjoughi, A. (2015). An energy-aware cross-layer cooperative MAC protocol for wireless ad hoc networks. Journal of Network and Computer Applications, 58, 227–240.

    Article  Google Scholar 

  63. Liu, K., Chang, X., Liu, F., Wang, X., & Vasilakos, A. V. (2015). A cooperative MAC protocol with rapid relay selection for wireless ad hoc networks. Computer Networks, 91, 262–282.

    Article  Google Scholar 

  64. Nischal, S., & Sharma, V. (2013). A cooperative ARQ scheme for infrastructure WLANs. In Wireless Communications and Networking Conference (WCNC), 2013 IEEE (pp. 428–433).

  65. Kim, K. H. (2013). Security attack based on control packet vulnerability in cooperative wireless networks. In ICNS 2013.

  66. Wang, N., Zhang, N., & Gulliver, T. A. (2014). Cooperative key agreement for wireless networking: Key rates and practical protocol design. IEEE Transactions on Information Forensics and Security, 9(2), 272–284.

    Article  Google Scholar 

  67. Luo, T., Motani, M., & Srinivasan, V. (2012). Energy-efficient strategies for cooperative multichannel MAC protocols. IEEE Transactions on Mobile Computing, 11(4), 553–566.

    Article  Google Scholar 

  68. Weng, Q., Guan, Q., Jiang, S., Yu, F. R., & Shi, J. (2013). Energy-efficient joint relay selection and power control for reliable cooperative communications. In 2013 IEEE/CIC international conference on communications in China (ICCC), (pp. 414–419).

  69. Sadeghi, R., Barraca, J. P., & Aguiar, R. L. (2014). Cooperation Metric for IEEE 802.11 Wireless Networks. In 2014 6th international conference on new technologies, mobility and security (NTMS), (pp. 1–5).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasool Sadeghi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadeghi, R., Barraca, J.P. & Aguiar, R.L. A Survey on Cooperative MAC Protocols in IEEE 802.11 Wireless Networks. Wireless Pers Commun 95, 1469–1493 (2017). https://doi.org/10.1007/s11277-016-3861-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3861-0

Keywords

Navigation