Skip to main content
Log in

Development of New All-Optical Signal Regeneration Technique

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

All-optical signal regeneration have been the active research area since last decade due to evolution of nonlinear optical signal processing. Existing all-optical signal regeneration techniques are agitated in producing low Bit Error Rate (BER) of 10−10 at below than −10 dBm power received. In this paper, a new all-optical signal regeneration technique is developed by using phase sensitive amplification and designed optical phase locked signal mechanism. The developed all-optical signal regeneration technique is tested for different 10 Gb/s Differential Phase Shift Keying degraded signals. It is determined that the designed all-optical signal regeneration technique is able to provide signal regeneration with noise mitigation for degraded signals. It is analyzed that overall, for all degraded test signals, average BER of 10−13 is achieved at received power of −14 dBm. The designed technique will be helpful to enhance the performance of existing signal regeneration systems in the presence of severe noise by providing minimum BER at low received power.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lundström, C., Corcoran, B., Karlsson, M., & Andrekson, P. A. (2012). Phase and amplitude characteristics of a phase-sensitive amplifier operating in gain saturation. Optics Express, 20(19), 21400–21412.

    Article  Google Scholar 

  2. Slavík, R., Parmigiani, F., Kakande, J., Lundström, C., Sjödin, M., Andrekson, P. A., et al. (2010). All-optical phase and amplitude regenerator for next-generation telecommunications systems. Nature Photonics, 4(10), 690–695.

    Article  Google Scholar 

  3. Das, B., Abdullah, M. F. L., & Shah, N. S. M. (2015). A new all-optical signal regeneration technique for 10 Gb/s DPSK transmission system. International Journal of Electrical and Computer Engineering, 6(2), 859–869.

    Google Scholar 

  4. Wang, J., Ji, H., Hu, H., Yu, J., Mulvad, H. C. H., Galili, M., et al. (2014). 4 × 160 Gbit/s multi-channel regeneration in a single fiber. Optics Express, 22(10), 11456–11464.

    Article  Google Scholar 

  5. Jones, L., Parmigiani, F., Petropoulos, P., & Richardson, D. J. (2015). Phase regeneration of an M-PSK signal using partial regeneration of its M/2-PSK second phase harmonic. Optics Communications, 334, 35–40.

    Article  Google Scholar 

  6. Willner, A. E., Khaleghi, S., Chitgarha, M. R., & Yilmaz, O. F. (2014). All-optical signal processing. Journal of Lightwave Technology, 32(4), 660–680.

    Article  Google Scholar 

  7. Damani, R., & Salehi, J. A. (2015). Almost zero-jitter optical clock recovery using all-optical kerr shutter switching techniques. Journal of Lightwave Technology, 33(9), 1737–1747.

    Article  Google Scholar 

  8. Corcoran, B., Olsson, S. L., Lundstro, C., Karlsson, M., & Andrekson, P. A. (2013). Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links. In IET Conference Proceedings. The Institution of Engineering and Technology.

  9. Kagawa, M., & Murai, H. (2012). Multi-format all-optical-3R-regeneration technology. OKI Technical Review, 79(1), 1–5.

    Google Scholar 

  10. Tong, Z., Lundström, C., Andrekson, P. A., Karlsson, M., & Bogris, A. (2012). Ultralow noise, broadband phase-sensitive optical amplifiers, and their applications. IEEE Journal of Selected Topics in Quantum Electronics, 18(2), 1016–1032.

    Article  Google Scholar 

  11. Chen, Z., Yan, L., Pan, W., Luo, B., Yi, A., Ye, J., et al. (2012). Phase sensitive amplifier for PSK signals based on non-degenerate four-wave-mixing in the optical fiber. Optics Communications, 285(9), 2445–2450.

    Article  Google Scholar 

  12. Corcoran, B., Olsson, S., Lundström, C., Karlsson, M., & Andrekson, P. (2013). Mitigation of nonlinear impairments on QPSK data in phase-sensitive amplified links. In: 39th European Conference on Optical Communication and Exhibition, ECOC, (pp 1–3). IET.

  13. Mohajerin-Ariaei, A., Ziyadi, M., Chitgarha, M. R., Almaiman, A., Cao, Y., Shamee, B., et al. (2015). Phase noise mitigation of QPSK signal utilizing phase-locked multiplexing of signal harmonics and amplitude saturation. Optics Letter, 40, 3328–3331.

    Article  Google Scholar 

  14. Olsson, S. L., Karlsson, M., & Andrekson, P. A. (2015). Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems. Optics Express, 23, 11724–11740.

    Article  Google Scholar 

  15. Das, B., Abdullah, M., Shahida, M. S. N., & Bukhsh, Q. (2015). All regeneration for optical communication network using optical 3R regeneration and phase sensitive amplifier. International Journal of Control and Automation, 8(8), 87–94.

    Article  Google Scholar 

  16. Parmigiani, F., Slavík, R., Kakande, J., Petropoulos, P., & Richardson, D. (2015). Optical regeneration. In S. Wabnitz & J. B. Eggleton (Eds.), All-optical signal processing: Data communication and storage applications (pp. 129–155). Switzerland: Springer.

    Google Scholar 

  17. Wen, F., Wu, B.-J., Zhou, X.-Y., Yuan, H., & Qiu, K. (2014). All-optical four-wavelength 2R regeneration based on data-pump four-wave-mixing with offset filtering. Optical Fiber Technology, 20(3), 274–279.

    Article  Google Scholar 

  18. Cao, Y., Ziyadi, M., Mohajerin-Ariaei, A., Yang, J. Y., Liao, P., Takasaka, S., et al. (2015). Experimental demonstration of optical signal level swapping and multi-level amplitude noise mitigation using three parametric gain regions. In Optical Fiber Communication Conference (pp. W2A. 49). Optical Society of America.

  19. Kaminow, I., Li, T., & Willner, A. E. (2010). Optical fiber telecommunications VB: Systems and networks. USA: Elsevier.

    Google Scholar 

  20. Zhu, H., Wang, R., Pu, T., Fang, T., Xiang, P., Zheng, J., et al. (2015). Optical stealth transmission based on super-continuum generation in highly nonlinear fiber over WDM network. Optics Letters, 40(11), 2561–2563.

    Article  Google Scholar 

  21. Das, B., Abdullah, M. F. L., & Shah, N. S. M. (2016). All Optical Signal Restoration for 10G DPSK System. In H. A. Sulaiman, M. A. Othman, M. F. I. Othman, Y. A. Rahim & N. C. Pee (Eds.), Advanced computer and communication engineering technology: Proceedings of ICOCOE 2015 (pp. 545–556). Cham: Springer.

  22. Parmigiani, F., Bottrill, K. R., Hesketh, G., Horak, P., Petropoulos, P., Richardson, D. J. (2014). Signal regeneration techniques for advanced modulation formats. In The conference on lasers and electro-optics, (pp. STu2J.1). OSA Publishing.

Download references

Acknowledgements

This research work is supported by Office for Research, Innovation, Commercialization and Consultancy Management (ORICC), Universiti Tun Hussein Onn Malaysia (UTHM) under ORICC fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhagwan Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, B., Abdullah, M.F.L., Mohd Shah, N.S. et al. Development of New All-Optical Signal Regeneration Technique. Wireless Pers Commun 95, 523–537 (2017). https://doi.org/10.1007/s11277-016-3907-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3907-3

Keywords

Navigation