Skip to main content
Log in

Study of Indoor Path Loss Computational Models for Femtocell Based Mobile Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Path loss minimization in next generation mobile network is a challenging research area. The signal transmitted by a base station degrades due to various obstacles in the environment. The received signal level at the mobile station is less than the transmitted signal level of the base station. This loss in the signal level is referred as path loss in mobile network. In this paper different path loss models are discussed for indoor environment covered by femtocell. It is assumed that the mobile users in that region exclusively access the services of femtocell. As only indoor area is considered, non-line of sight propagation is examined. Signal-to-interference-plus-noise-ratio for a femtocell base station is calculated. The performance of the path loss models are analyzed using vector signal generator and vector signal analyzer. A comparative analysis is carried out between the models. Based on the comparative analysis, a case study is performed to demonstrate how an appropriate path loss model will be selected depending on the frequency range, building type, walls and floors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Himayat, N., Talwar, S., Rao, A., & Soni, R. (2010). Interference management for 4G cellular standards [wimax/lte update]. Communications Magazine, IEEE, 48(8), 86–92.

    Article  Google Scholar 

  2. Zahariadis, T. (2003). Trends in the path to 4G. Communications Engineer, 1(1), 12–15.

    Article  Google Scholar 

  3. Choi, Y. J., Lee, K. B., & Bahk, S. (2007). All-IP 4G network architecture for efficient mobility and resource management. Wireless Communications, IEEE, 14(2), 42–46.

    Article  Google Scholar 

  4. Varshney, U., & Jain, R. (2001). Issues in emerging 4G wireless networks. Computer, 34(6), 94–96.

    Article  Google Scholar 

  5. Velasco, E., Wavemax Corp. (2014). Next generation network services for 3G/4G mobile data offload in a network of shared protected/locked Wi-Fi access points. U.S. Patent 8,811,363.

  6. Ikuno J. C., Wrulich, M., & Rupp, M. (2010). System level simulation of LTE networks. In Vehicular technology conference (VTC 2010-spring), 2010 IEEE 71st (pp. 1–5). IEEE.

  7. Lobinger, A., Stefanski, S., Jansen, T., & Balan, I. (2011). Coordinating handover parameter optimization and load balancing in LTE self-optimizing networks. In Vehicular technology conference (VTC spring), 2011 IEEE 73rd (pp. 1–5). IEEE.

  8. Hu, H., Zhang, J., Zheng, X., Yang, Y., & Wu, P. (2010). Self-configuration and self-optimization for LTE networks. Communications magazine, IEEE, 48(2), 94–100.

    Article  Google Scholar 

  9. Zaki, Y., Zhao, L., Goerg, C., & Timm-Giel, A. (2011). LTE mobile network virtualization. Mobile Networks and Applications, 16(4), 424–432.

    Article  Google Scholar 

  10. Yuan, G., Zhang, X., Wang, W., & Yang, Y. (2010). Carrier aggregation for LTE-advanced mobile communication systems. Communications Magazine, IEEE, 48(2), 88–93.

    Article  Google Scholar 

  11. Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. Communications Magazine, IEEE, 46(9), 59–67.

    Article  Google Scholar 

  12. Chandrasekhar, V., Andrews, J. G., Muharemovic, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328.

    Article  Google Scholar 

  13. Bouras, C., Kokkinos, V., Kontodimas, K., & Papazois, A. (2012). A simulation framework for LTE-A systems with femtocell overlays. In Proceedings of the 7th ACM workshop on performance monitoring and measurement of heterogeneous wireless and wired networks (pp. 85–90). ACM.

  14. Claussen, H., Ho, L. T., & Samuel, L. G. (2008). An overview of the femtocell concept. Bell Labs Technical Journal, 13(1), 221–245.

    Article  Google Scholar 

  15. Jo, H. S., Mun, C., Moon, J., & Yook, J. G. (2009). Interference mitigation using uplink power control for two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(10), 4906–4910.

    Article  Google Scholar 

  16. Claussen, H., Ho, L. T., & Samuel, L. G. (2008). Self-optimization of coverage for femtocell deployments. In Wireless telecommunications symposium (pp. 278–285). IEEE.

  17. Weitzen, J., & Grosch, T. (2010). Comparing coverage quality for femtocell and macrocell broadband data services. Communications Magazine, IEEE, 48(1), 40–44.

    Article  Google Scholar 

  18. Claussen, H., & Pivit, F. (2009, June). Femtocell coverage optimization using switched multi-element antennas. In IEEE international conference on communications (pp. 1–6). IEEE.

  19. Calin, D., Claussen, H., & Uzunalioglu, H. (2010). On femto deployment architectures and macrocell offloading benefits in joint macro-femto deployments. Communications Magazine, IEEE, 48(1), 26–32.

    Article  Google Scholar 

  20. Ashraf, I., Claussen, H., & Ho, L. T. (2010). Distributed radio coverage optimization in enterprise femtocell networks. In IEEE international conference on communications (pp. 1–6). IEEE.

  21. Akyildiz, I. F., Xie, J., & Mohanty, S. (2004). A survey of mobility management in next-generation all-IP-based wireless systems. Wireless Communications, IEEE, 11(4), 16–28.

    Article  Google Scholar 

  22. Huang, L., Zhu, G., & Du, X. (2013). Cognitive femtocell networks: An opportunistic spectrum access for future indoor wireless coverage. Wireless Communications, IEEE, 20(2), 44–51.

    Article  Google Scholar 

  23. Hiltunen, K., Olin, B., & Lundevall, M. (2005, May). Using dedicated in-building systems to improve HSDPA indoor coverage and capacity. In Vehicular Technology Conference (pp. 2379–2383). IEEE.

  24. Isotalo, T., Lahdekorpi, P., & Lempiäinen, J. (2008). Improving HSDPA indoor coverage and throughput by repeater and dedicated indoor system. EURASIP Journal on Wireless Communications and Networking, 2008, 45.

    Article  Google Scholar 

  25. Mohjazi, L., Al-Qutayri, M., Barada, H., Poon, K., & Shubair, R. (2011). Deployment challenges of femtocells in future indoor wireless networks. In IEEE GCC conference and exhibition (GCC) (pp. 405–408). IEEE.

  26. Karner, W., Paier, A., & Rupp, M. (2006). Indoor coverage prediction and optimization for UMTS macro cells. In Third international symposium on wireless communication systems (pp. 625–630). IEEE.

  27. Huber, K. D., Brisebois, A. R. & Flynn, J. J., At &T Mobility Ii Llc. (2012).Femto cell access point pass through model. U.S. Patent 8,194,549.

  28. Taranetz, M., & Rupp, M. (2012). Performance of femtocell access point deployments in user hot-spot scenarios. In Telecommunication networks and applications conference (pp. 1–5). IEEE.

  29. Lopez-Perez, D., Valcarce, A., De La Roche, G., & Zhang, J. (2009). OFDMA femtocells: A roadmap on interference avoidance. Communications Magazine, IEEE, 47(9), 41–48.

    Article  Google Scholar 

  30. Ho, L. T., & Claussen, H. (2007). Effects of user-deployed, co-channel femtocells on the call drop probability in a residential scenario. In IEEE eighteenth international symposium on personal, indoor and mobile radio communications (pp. 1–5). IEEE.

  31. Golaup, A., Mustapha, M., & Patanapongpibul, L. B. (2009). Femtocell access control strategy in UMTS and LTE. Communications Magazine, IEEE, 47(9), 117–123.

    Article  Google Scholar 

  32. Liu, J., Kou, T., Chen, Q., & Sherali, H. D. (2012). Femtocell base station deployment in commercial buildings: A global optimization approach. IEEE Journal on Selected Areas in Communications, 30(3), 652–663.

    Article  Google Scholar 

  33. Lu, P. C., Tsao, K. J., Huang, C. R., & Hou, T. C. (2010). A suburban femtocell model for evaluating signal quality improvement in WiMAX networks with femtocell base stations. In Wireless communications and networking conference (pp. 1–6). IEEE.

  34. Morita, M., Matsunaga, Y., & Hamabe, K. (2010). Adaptive power level setting of femtocell base stations for mitigating interference with macrocells. In Vehicular technology conference fall (pp. 1–5). IEEE.

  35. Guvenc, I., Jeong, M. R., Watanabe, F., & Inamura, H. (2008). A hybrid frequency assignment for femtocells and coverage area analysis for co-channel operation. IEEE Communications Letters, 12(12), 880–882.

    Article  Google Scholar 

  36. Saquib, N., Hossain, E., Le, L. B., & Kim, D. I. (2012). Interference management in OFDMA femtocell networks: Issues and approaches. Wireless Communications, IEEE, 19(3), 86–95.

    Article  Google Scholar 

  37. Ashraf, I., Ho, L. T., & Claussen, H. (2010). Improving energy efficiency of femtocell base stations via user activity detection. In Wireless communications and networking conference (pp. 1–5). IEEE.

  38. Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks, 57(1), 162–178.

    Article  Google Scholar 

  39. Mukherjee, A., & De, D. (2013). Congestion detection, prevention and avoidance strategies for an intelligent, energy and spectrum efficient green mobile network. Journal of Computational Intelligence and Electronic Systems, 2(1), 1–19.

    Article  Google Scholar 

  40. Torregoza, J. P. M., Enkhbat, R., & Hwang, W. J. (2010). Joint power control, base station assignment, and channel assignment in cognitive femtocell networks. EURASIP Journal on Wireless Communications and Networking, 2010(1), 1–14.

    Article  Google Scholar 

  41. Ebongue, J. L. F. K., Nelson, M., & Nlong, J. M. (2014). Empirical path loss models for 802.11 n wireless networks at 2.4 GHz in rural regions. In e-Infrastructure and e-services for developing countries (pp. 53–63). Springer.

  42. Phillips, C., Sicker, D., & Grunwald, D. (2013). A survey of wireless path loss prediction and coverage mapping methods. Communications Surveys & Tutorials, IEEE, 15(1), 255–270.

    Article  Google Scholar 

  43. Sulyman, A. I., Nassar, A. T., Samimi, M. K., MacCartney, G. R., Rappaport, T. S., & Alsanie, A. (2014). Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands. Communications Magazine, IEEE, 52(9), 78–86.

    Article  Google Scholar 

  44. Huang, K., & Lau, V. K. (2014). Enabling wireless power transfer in cellular networks: Architecture, modeling and deployment. IEEE Transactions on Wireless Communications, 13(2), 902–912.

    Article  Google Scholar 

  45. Fan, Z., Cao, F., Sun, Y., & Zhu, Z. (2013). Interference management in femtocell networks. Wireless Communications and Mobile Computing, 13(11), 1027–1046.

    Article  Google Scholar 

  46. Qi, Y., Kobayashi, H., & Suda, H. (2006). Analysis of wireless geolocation in a non-line-of-sight environment. IEEE Transactions on Wireless Communications, 5(3), 672–681.

    Article  Google Scholar 

  47. Venkatesh, S., & Buehrer, R. M. (2007). Non-line-of-sight identification in ultra-wideband systems based on received signal statistics. Microwaves, Antennas & Propagation, IET, 1(6), 1120–1130.

    Article  Google Scholar 

  48. Turkka, J., & Renfors, M. (2008). Path loss measurements for a non-line-of-sight mobile-to-mobile environment. In Eighth international conference on ITS telecommunications (pp. 274–278). IEEE.

  49. Andersen, J. B., Rappaport, T. S., & Yoshida, S. (1995). Propagation measurements and models for wireless communications channels. Communications Magazine, IEEE, 33(1), 42–49.

    Article  Google Scholar 

  50. Aragon-Zavala, A. (2008). Antennas and propagation for wireless communication systems. New York: Wiley.

    Google Scholar 

  51. Bouras, C., Kavourgias, G., Kokkinos, V., & Papazois, A. (2012). Interference management in LTE femtocell systems using an adaptive frequency reuse scheme. In Wireless Telecommunications Symposium (WTS), 2012 (pp. 1–7). IEEE.

  52. Zahir, T., Arshad, K., Nakata, A., & Moessner, K. (2013). Interference management in femtocells. Communications Surveys & Tutorials, IEEE, 15(1), 293–311.

    Article  Google Scholar 

  53. Saquib, N., Hossain, E., & Kim, D. I. (2013). Fractional frequency reuse for interference management in LTE-advanced hetnets. Wireless Communications, IEEE, 20(2), 113–122.

    Article  Google Scholar 

  54. Shen, Z., Khoryaev, A., Eriksson, E., & Pan, X. (2012). Dynamic uplink-downlink configuration and interference management in TD-LTE. Communications Magazine, IEEE, 50(11), 51–59.

    Article  Google Scholar 

  55. Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.

    Article  Google Scholar 

  56. Alkandari, A., & Ahmad, M. A. (2012). Interference management in femtocells. Journal of Advanced Computer Science and Technology Research, 2(1), 10–21.

    Google Scholar 

  57. Zhang, Q., Feng, Z., & Li, W. (2015). Coverage Self-Optimization for Randomly Deployed Femtocell Networks. Wireless Personal Communications, 82(4), 2481–2504.

    Article  Google Scholar 

  58. Chai, X., Xu, X., & Zhang, Z. (2015). A user-selected uplink power control algorithm in the two-tier femtocell network. Science China Information Sciences, 58(4), 1–12.

    Article  Google Scholar 

  59. Mukherjee, A., De, D., & Deb, P. (2016). Interference management in macro-femtocell and micro-femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications, 10(5), 468–478.

    Article  Google Scholar 

  60. Chowdhury, M. Z., Jang, Y. M., & Haas, Z. J. (2011). Cost-effective frequency planning for capacity enhancement of femtocellular networks. Wireless Personal Communications, 60(1), 83–104.

    Article  Google Scholar 

  61. Kalbkhani, H., Jafarpour-Alamdari, S., Solouk, V., & Shayesteh, M. G. (2014). Interference management and six-sector macrocells for performance improvement in femto–macro cellular networks. Wireless Personal Communications, 75(4), 2037–2051.

    Article  Google Scholar 

  62. Oh, C. Y., Chung, M. Y., Choo, H., & Lee, T. J. (2013). Resource allocation with partitioning criterion for macro-femto overlay cellular networks with fractional frequency reuse. Wireless Personal Communications, 68(2), 417–432.

    Article  Google Scholar 

  63. Dohler, M., & Aghvami, A. H. (1999). An outdoor-indoor interface model for radio wave propagation for 2.4, 5.2 and 60 GHz. MSc Project, King’s College London.

  64. Damasso, E., & Correia, L. M. (1999). Digital Mobile Radio Towards Future Generation-COST 231 Final Report. Brussels: COST Office.

  65. Bultitude, Y. D. J., & Rautiainen, T. (2007). IST-4-027756 WINNER II D1. 1.2 V1. 2 WINNER II channel models, 1–82.

  66. Lott, M., & Forkel, I. (2001). A multi-wall-and-floor model for indoor radio propagation. In Vehicular technology conference (pp. 464–468). IEEE.

  67. Recommendations, I. T. U. R. (2001). Propagation data and prediction methods for the planning of indoor radio communication systems and radio local area networks in the frequency range 900 MHz to 100 GHz. ITU Recommendations, 1–15.

  68. Singh, S., & Singh, P. (2012). Key concepts and network architecture for 5G mobile technology. International Journal of Scientific Research Engineering & Technology (IJSRET), 1(5), 165–170.

    Google Scholar 

  69. Müller, C., Georg, H., Putzke, M., & Wietfeld, C. (2011, October). Performance analysis of radio propagation models for Smart Grid applications. In IEEE international conference on smart grid communications (SmartGridComm) (pp. 96–101). IEEE.

  70. Deng, S., Samimi, M. K., & Rappaport, T. S. (2015, June). 28 GHz and 73 GHz millimeter-wave indoor propagation measurements and path loss models. In IEEE international conference on communication workshop (pp. 1244-1250). IEEE.

  71. Rappaport, T. S., Gutierrez, F., Ben-Dor, E., Murdock, J. N., Qiao, Y., & Tamir, J. (2013). Broadband millimeter-wave propagation measurements and models using adaptive-beam antennas for outdoor urban cellular communications. Antennas and Propagation, IEEE Transactions on, 61(4), 1850–1859.

    Article  Google Scholar 

  72. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! Access, IEEE, 1, 335–349.

    Article  Google Scholar 

  73. MacCartney, G. R., Zhang, J., Nie, S., & Rappaport, T. S. (2013). Path loss models for 5G millimeter wave propagation channels in urban microcells. In Global communications conference (pp. 3948–3953). IEEE.

  74. Larew, S. G., Thomas, T., Cudak, M., & Ghosh, A. (2013, December). Air interface design and ray tracing study for 5G millimeter wave communications. In Globecom workshops (pp. 117–122). IEEE.

  75. Federal Communications Commission. (1997). Millimeter wave propagation: Spectrum management implications. Bulletin, 70, 1–24.

  76. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

    Article  Google Scholar 

  77. Khan, F., Pi, Z., & Rajagopal, S. (2012, October). Millimeter-wave mobile broadband with large scale spatial processing for 5G mobile communication. In Annual allerton conference on communication, control, and computing (pp. 1517–1523). IEEE.

  78. Viriyasitavat, W., Boban, M., Tsai, H. M., & Vasilakos, A. (2015). Vehicular communications: Survey and challenges of channel and propagation models. Vehicular Technology Magazine, IEEE, 10(2), 55–66.

    Article  Google Scholar 

  79. Sommer, C., Eckhoff, D., German, R., & Dressler, F. (2011, January). A computationally inexpensive empirical model of IEEE 802.11 p radio shadowing in urban environments. In Eighth international conference on wireless on-demand network systems and services (pp. 84–90). IEEE.

Download references

Acknowledgements

Authors are grateful to Department of Science and Technology (DST) for sanctioning a research Project entitled “Dynamic Optimization of Green Mobile Networks: Algorithm, Architecture and Applications” under Fast Track Young Scientist scheme Reference No.: SERB/F/5044/2012–2013, No. DST/INSPIRE Fellowship/2013/327 and TEQIP II under which this paper has been completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debashis De.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deb, P., Mukherjee, A. & De, D. Study of Indoor Path Loss Computational Models for Femtocell Based Mobile Network. Wireless Pers Commun 95, 3031–3056 (2017). https://doi.org/10.1007/s11277-017-3983-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-3983-z

Keywords

Navigation