Skip to main content
Log in

Joint Spatial-Temporal Access Scheme for Multihop Cognitive Relay Networks Over Nakagami-m Fading

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper investigates the cooperative multihop cognitive relay networks (CRNs) under a novel two-dimensional spatial-temporal opportunity model, in which free opportunity and sharing opportunity are defined to enhance the spectrum efficiency. Correspondingly, a joint spatial-temporal access scheme (JSTAS) is proposed to realize successive spectrum access for continuous data transmission. The multihop CRNs with fixed relaying employ decode-and-forward with and without signal-to-noise ratio selection, which are named as SDF and DF, respectively. Then, considering the interference constraints from multiple primary receivers, the interference of one primary transmitter and the maximum transmit powers of cognitive users, we study the outage performance of multihop CRNs with JSTAS over Nakagami-m fading. To comprehensively evaluate JSTAS, we further present the pure spatial access scheme (SAS) and the pure temporal access scheme (TAS) under the spatial-temporal opportunity model, and calculate their average network outage probabilities. Simulation results demonstrate that SDF outperforms DF, while JSTAS outperforms SAS and TAS under all considered scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Letaief, K. B., & Zhang, W. (2009). Cooperative communications for cognitive radio networks. Proceedings of the IEEE, 97(5), 878–893.

    Article  Google Scholar 

  2. Marinho, J., & Monteiro, E. (2012). Cognitive radio survey on communication protocols, spectrum decision issues, and future research directions. Wireless Networks, 18, 147–167.

    Article  Google Scholar 

  3. Zou, Y., Yao, Y.-D., & Zheng, B. (2010). Outage probability analysis of cognitive transmissions: Impact of spectrum sensing overhead. IEEE Transactions on Wireless Communications, 9(8), 2676–2688.

    Article  Google Scholar 

  4. Kim, J.-B., & Kim, D. (2012). Outage probability and achievable diversity order of opportunistic relaying in cognitive secondary radio networks. IEEE Transaction on Communications, 60(9), 2456–2466.

    Article  Google Scholar 

  5. Zou, Y., Champagne, B., Zhu, W.-P., & Hanzo, L. (2015). Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Transactions on Vehicular Technology, 63(1), 2875–2879.

    Google Scholar 

  6. Li, D. (2014). Cognitive relay networks: Opportunistic or uncoded decode-and-forward relaying? IEEE Transactions on Vehicular Technology, 63(3), 1486–1491.

    Article  MathSciNet  Google Scholar 

  7. Zhong, C., Ratnarajah, T., & Wong, K.-K. (2011). Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in Nakagami-\(m\) fading channels. IEEE Transactions on Vehicular Technology, 60(6), 2875–2879.

    Article  Google Scholar 

  8. Ho-Van, K. (2015). Exact outage analysis of underlay cooperative cognitive networks with reactive relay selection under imperfect channel information. Wireless Personal Communications, 84(1), 565–585.

    Article  Google Scholar 

  9. Sharma, P. K., Solanki, S., & Upadhyay, P. K. (2015). Outage analysis of cognitive opportunistic relay networks with direct link in Nakagami-\(m\) fading. IEEE Communications Letters, 19(5), 875–878.

    Article  Google Scholar 

  10. Xu, W., Zhang, J., Zhang, P., & Tellambura, C. (2012). Outage probability of decode-and-forward cognitive relay in presence of primary users interference. IEEE Communications Letters, 16(8), 1252–1255.

    Article  Google Scholar 

  11. Duong, T. Q., Yeoh, P. L., Bao, V. N. Q., Elkashlan, M., & Yang, N. (2012). Cognitive relay networks with multiple primary transceivers under spectrum-sharing. IEEE Signal Processing Letters, 19(11), 741–744.

    Article  Google Scholar 

  12. da Costa, D. B., Elkashlan, M., Yeoh, P. L., Yang, N., & Yacoub, M. D. (2012). Dual-hop cooperative spectrum sharing systems with multi-primary users and multi-secondary destinations over Nakagami-\(m\) fading. In Proceedings of IEEE PIMRC (pp. 1577–1581). London, September 8–11, 2013.

  13. Guimaraes, F. R. V., da Costa, D. B., Tsiftsis, T. A., Cavalcante, C. C., & Karagiannidis, G. K. (2014). Multiuser and multirelay cognitive radio networks under spectrum-sharing constraints. IEEE Transactions on Vehicular Technology, 63(1), 433–439.

    Article  Google Scholar 

  14. Huang, Y., Al-Qahtani, F., Wu, Q., Zhong, C., Wang, J., & Alnuweiri, H. (2014). Outage analysis of spectrum sharing relay systems with multiple secondary destinations under primary users interference. IEEE Transactions on Vehicular Technology, 63(7), 3456–3463.

    Article  Google Scholar 

  15. Bao, V. N.Q., Duong, T. Q., Nallanathan, A., & Tellambura, C. (2013). Effect of imperfect channel state information on the performance of cognitive multihop relay networks. In Proceedings of IEEE Globecom (pp. 3458–3463). Atlanta, USA, December 9–13, 2013.

  16. Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Cognitive multihop wireless sensor networks over Nakagami-\(m\) fading channels. International Journal of Distributed Sensor Networks. doi:10.1155/2014/630823.

    Google Scholar 

  17. Hyadi, A., Benjillali, M., Alouini, M.-S., & da Costa, D. B. (2013). Performance analysis of underlay cognitive multihop regenerative relaying systems with multiple primary receivers. IEEE Transactions on Wireless Communications, 12(12), 6418–6429.

    Article  Google Scholar 

  18. Kim, K. J., T. Duong, Q., Tsiftsis, T. A., & Bao, V. N. Q. (2013). Cognitive multihop networks in spectrum sharing environment with multiple licensed users. In Proceedings of IEEE ICC (pp. 2869–2873), Budapest, Hungary, June 9–13, 2013.

  19. Acharya, T., Maity, S. P., & Mandal, S. (2015). Outage minimized joint power and channel allocation in multihop cognitive radio networks: a lifetime-centric approach. Wireless Personal Communications, 83(4), 2519–2537.

    Article  Google Scholar 

  20. Tandra, R., Sahai, A., & Veeravalli, V. (2011). Unified space-time metrics to evaluate spectrum sensing. IEEE Communications Magazine, 49(3), 54–61.

    Article  Google Scholar 

  21. Do, T., & Mark, B. L. (2010). Joint spatial-temporal spectrum sensing for cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(7), 3480–3490.

    Article  Google Scholar 

  22. Wu, Q., Ding, G., Wang, J., & Yao, Y.-D. (2013). Spatial-temporal opportunity detection for spectrum-heterogeneous cognitive radio networks: Two-dimensional sensing. IEEE Transactions on Wireless Communications, 12(2), 516–526.

    Article  Google Scholar 

  23. Ding, G., Wang, J., Wu, Q., Song, F., & Chen, Y. (2013). Spectrum sensing in opportunity-heterogeneous cognitive sensor networks: How to cooperate? IEEE Sensors Journal, 13(11), 4247–4255.

    Article  Google Scholar 

  24. Li, Q., Feng, Z., Li, W., & Gulliver T. A. (2013). Joint temporal and spatial spectrum sharing in cognitive radio networks: A region-based approach with cooperative spectrum sensing. In Proceedings of IEEE WCNC (pp. 620–625), Shanghai, China, April 7–10, 2013.

  25. Farhadi, G., & Beaulieu, N. C. (2010). Fixed relaying versus selective relaying in multihop diversity transmission systems. IEEE Transactions on Communications, 58(3), 956–965.

    Article  Google Scholar 

  26. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). San Diego, CA: Academic Press.

    MATH  Google Scholar 

  27. Jin, A.-L., Song, W., Ju, P., & Zhou, D. (2014). Energy-aware cooperation strategy with uncoordinated group relays for delay-sensitive services. IEEE Transactions on Vehicular Technology, 63(5), 2104–2114.

    Article  Google Scholar 

  28. Han, W., Li, J., Li, Z., Si, J., & Zhang, Y. (2013). Spatial false alarm in cognitive radio network. IEEE Transactions on Signal Processing, 61(6), 1375–1388.

    Article  MathSciNet  Google Scholar 

  29. Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.

    Article  Google Scholar 

  30. Kang, X., Liang, Y.-C., Garg, H. K., & Zhang, L. (2009). Sensing-based spectrum sharing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 58(8), 4649–4654.

    Article  Google Scholar 

  31. Stotas, S., & Nallanathan, A. (2011). On the outage capacity of sensing-enhanced spectrum sharing cognitive radio systems in fading channels. IEEE Transactions on Communications, 5(10), 2871–2882.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under grant 61233007, 61673371, and 71661147005, and Youth Innovation Promotion Association, CAS under grant 2015157.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chi Xu or Haibin Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Zheng, M., Liang, W. et al. Joint Spatial-Temporal Access Scheme for Multihop Cognitive Relay Networks Over Nakagami-m Fading. Wireless Pers Commun 95, 3097–3117 (2017). https://doi.org/10.1007/s11277-017-3986-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-3986-9

Keywords

Navigation