Skip to main content
Log in

Research on Methods for Improving Robustness of Cascading Failures of Interdependent Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The issue about cascading failures of interdependent networks is a hot research field based on the current complex network basic theories. This paper mainly researches methods for improving robustness of interdependent networks. At first, a model of interdependent network cascading failures was established to carry out robustness analysis of three different interdependent networks including BA–BA, WS–WS and ER–ER. Then, methods for improving robustness of interdependent networks under random attacks and targeted attacks were researched respectively. (1)Under random attacks, based on the overall idea of network addition, the paper summarized four common methods for improving robustness of a simple complex network, including random addition, low-degree node addition, low-betweenness node addition and addition based on algebra connectivity. After that, according to inherent characteristics of interdependent networks, the paper put forward an interdependent network addition algorithm based on internal similarities. It is shown in cascading failure simulation calculation results of three interdependent coupling networks, that the method put forward in this paper can most effectively improve robustness of interdependent networks under random attacks. (2)Based on the overall idea of protecting key nodes under targeted attacks, the paper put forward a method for analyzing key nodes of interdependent networks based on natural connectivity. Then, under the BA–BA interdependent network, the paper analyzed this method in comparison with the commonly approved Max-Cas algorithm. It is shown in simulation calculation results that, the method put forward in this paper can more obviously improve robustness of an interdependent network under targeted attacks and can be applied flexibly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Li, L., Xiao, J., Peng, H., Yang, Y., & Chen, Y. (2012). Improving synchronous ability between complex networks. Nonlinear Dynamics, 69, 1105–1110.

    Article  MathSciNet  Google Scholar 

  2. Wang, W., Li, L., Peng, H., Xiao, J., & Yang, Y. (2014). Stochastic synchronization of complex network via a novel adaptive nonlinear controller. Nonlinear Dynamics, 76, 591–598.

    Article  MathSciNet  MATH  Google Scholar 

  3. Wang, K., Zhang, B., Zhang, H. Z., Yin, X. G., & Wang, B. (2011). An electrical betweenness approach for vulnerability assessment of power grids considering the capacity of generators and load. Physica A, 390, 4692–4701.

    Article  MathSciNet  Google Scholar 

  4. Buldyrev, S. V., Parshani, R., Paul, G., Stanley, H. E., & Havlin, S. (2010). Catastrophic cascade of failures in interdependent networks. Nature, 464, 1025–1028.

    Article  Google Scholar 

  5. Lü, L., Yu, M., Li, C., Liu, S., Yan, B., Chang, H., et al. (2013). Projective synchronization of a class of complex network based on high-order sliding mode control. Nonlinear Dynamics, 73, 411–416.

    Article  MathSciNet  MATH  Google Scholar 

  6. Wang, J. W., Yun, L., & Zheng, Q. F. (2014). Cascading load model in interdependent networks with coupled strength. Physica A, 430, 242–253.

    Article  MathSciNet  Google Scholar 

  7. Sydney, A., Scoglio, C., & Gruenbacher, D. (2013). Optimizing algebraic connectivity by edge rewiring. Applied Mathematics and Computation, 219, 5465–5479.

    Article  MathSciNet  MATH  Google Scholar 

  8. Ji, X., Wang, B., Liu, D., Guo, C., Tang, F., Wei, D., et al. (2016). Improving interdependent networks robustness by adding connectivity links. Physica A, 444, 9–16.

    Article  Google Scholar 

  9. Peng, X. Z., Yao, H., Du, J., Wang, Z., & Ding, C. (2015). Load-induced cascading failure in interdependent network. Acta Physica Sinica, 64(4), 048901.

    Google Scholar 

  10. Wang, J. W., & Rong, L. L. (2011). Robustness of the western United States power grid under edge attack strategies due to cascading failures. Safety Science, 49(6), 807–812.

    Article  Google Scholar 

  11. Cohen, R., Erez, K. D., Avraham, B., & Havlin, S. (2001). Breakdown of the internet under intentional attack. Physical Review Letters, 86(16), 3682–3685.

    Article  Google Scholar 

  12. Gao, J., Buldyrev, S. V., Stanley, H., & Havlin, E. S. (2012). Networks formed from interdependent networks. Nature Physics, 8(1), 40–48.

    Article  Google Scholar 

  13. Watts, D. J., & Strogatz, S. H. (1998). Co1lective dynamics of small-world networks. Nature, 393(6684), 440–442.

    Article  Google Scholar 

  14. Barabasi, A. L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286(5439), 509–512.

    Article  MathSciNet  MATH  Google Scholar 

  15. Ruj, S., & Pal, A. (2014). In 28th International conference on advanced information networking and applications, Victoria, BC, Canada.

  16. Liu, R. R., Jia, C. X., Zhang, J. L., & Wang, B. H. (2012). Robustness of interdependent networks under several intentional attack strategies. Journal of University of Shanghai for Science and Technology, 34(3), 235–239.

    Google Scholar 

  17. Nguyen, D. T., Shen, Y., & Thai, M. T. (2013). Detecting critical nodes in interdependent power networks for vulnerability assessment. IEEE Transactions on Smart Grid, 4, 151–159.

    Article  Google Scholar 

  18. Sen, A., Mazumder, A., Banerjee, J., & Das, A. (2014). Identification of K most vulnerable nodes in multi-layered network using a new model of interdependency, Compton R 2014. In Proceedings of IEEE conference on computer communications workshops, Toronto.

  19. Shao, J., Buldyrev, S., Havlin, V. S., & Stanley, H. E. (2011). Cascade of failures in coupled network systems with multiple support dependence relations. Physical Review E, 83(3), 036116.

    Article  MathSciNet  Google Scholar 

  20. Schneider, C. M., Yazdani, N., Araújo, N. A. M., Havlin, S., & Herrmann, (2013). Towards designing robust coupled networks. Scientific Reports, 3, 01969.

    Article  Google Scholar 

  21. Parshani, R., Rozenblat, C., Ietri, D., Ducruet, C., & Havlin, S. (2010). Inter-similarity between coupled networks. Europhysics Letters, 92, 68002.

    Article  Google Scholar 

  22. Zhou, D., Stanley, E., Agostino, G. D., & Scala, A. (2012). Assortativity decreases the robustness of interdependent networks. Physical Review E, 86, 066103.

    Article  Google Scholar 

  23. Cao, X. B., Hong, C., Du, W. B., & Zhang, J. (2013). Improving the network robustness against cascading failures by adding links. Chaos, Solitons & Fractals, 57, 35.

    Article  MATH  Google Scholar 

  24. Marsden, P. V. (2015). Network centrality, measures of. In International Encyclopedia of the Social & Behavioral Sciences, (Second Edition), 532–539.

  25. Guan, Z. H., Chen, L., & Qian, T. H. (2011). Routing in scale-free networks based on expanding betweenness centrality. Physica A, 390, 1131.

    Article  Google Scholar 

  26. Wang, H., & Mieghem, P. (2008). Algebraic connectivity optimization via link addition. In Proceedings of the 3rd ICST international conference on bio-inspired models of network, information and computing systems Hyogo, Japan.

  27. Fiedler, M. (1973). Algebraic connectivity of graphs. Czechoslovak Mathematics Journal, 23, 298–305.

    MathSciNet  MATH  Google Scholar 

  28. Hyun, C. H., Jin, G. S., & Shon, J. S. (2016). Design and implementation of a reliable message transmission system based on MQTT protocol in IoT. Wireless Personal Communications, 91, 1765–1777.

    Article  Google Scholar 

  29. Mishra, D., Das, A. K., Sourav, M., & Mohammad, W. (2016). A secure and robust smartcad-based authentication scheme for session initiation protocol using elliptic curve cryptography. Wireless Personal Communications, 91, 1361–1391.

    Article  Google Scholar 

  30. Wu, J., Barahona, M., Tan, Y. J., et al. (2011). Robustness of regularring lattices based on natural connectivity. International Journal of Systems Science, 42(7), 1085–1092.

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, J., Barahona, M., Tan, Y. J., et al. (2012). Robustness of random graphs based on graph spectra. Chaos, 22(4), 43101.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anwei Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, A., Guo, J. & Wang, Z. Research on Methods for Improving Robustness of Cascading Failures of Interdependent Networks. Wireless Pers Commun 95, 2111–2126 (2017). https://doi.org/10.1007/s11277-017-4041-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4041-6

Keywords

Navigation