Skip to main content
Log in

Performance of a Relay Antenna Selection Based Dynamic Spectrum Sharing Protocol with Opportunistic Selection of Users

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We consider a cellular scenario in which a base-station primary transmitter communicates to its primary receivers (PRs) using a set of multiple antenna relay stations (RS). One of several RS that is selected is assumed to employ antenna selection. The primary network allows one of its users to access the secondary network simultaneously in the same two phases (by using a selected RS) through dynamic spectrum sharing principles. Such a framework allows the cellular system to increase its frequency utilization. We derive expressions for the outage and ergodic rate performance of such spectrum sharing communication links. Systems performing spectrum sharing are assumed to have a peak power constraint and use peak interference control (to limit interference to the PR). For a fixed primary outage, it is demonstrated that increasing the number of users improves the performance at medium values of SNR, whereas increasing the number of RSs improves the performance at high SNRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The outage analysis part of this paper was presented for a different framework in the 7th International Conference on Signal Processing and Communication Systems (ICSPCS), 2013.

  2. Clearly, this number can vary from RS to another, but is taken to be the same in this paper for ease of presentation.

References

  1. da Costa, D., & Aissa, S. (2009). Capacity analysis of cooperative systems with relay selection in nakagami-m fading. IEEE Communications Letters, 13(9), 637639.

    Article  Google Scholar 

  2. Gradshteyn, I. S., & Ryzhik, I. M. (2007). A. Jeffrey, D. Zwillinger (Eds.), Table of integrals, series, and products (7th ed.); Publication Date: March 9, 2007, ISBN-10: 0123736374 ISBN-13, 978-0123736376

  3. Hamdi, K., Zhang, W., & Letaief, K. (2009). Opportunistic spectrum sharing in cognitive MIMO wireless networks. IEEE Transactions on Wireless Communications, 8(8), 4098–4109.

    Article  Google Scholar 

  4. Han, Y., Ting, S. H., & Pandharipande, A. (2012). Cooperative spectrum sharing protocol with selective relaying system. IEEE Transactions on Communications, 60(1), 62–67.

    Article  Google Scholar 

  5. Kartlak, H., Odabasioglu, N., & Akan, A. (2012) Adaptive multiple relay selection and power optimization for cognitive radio networks. In 2012 9th international conference on Communications (COMM), pp. 197, 200, 21–23.

  6. Larsson, E. G. & Stoica, P. Space-time block coding for wireless communications. Cambridge University Press.

  7. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  8. Li, F., Bai, B., Zhang, J., & Letaief, K. B. (2011) Location-based joint relay selection and channel allocation for cognitive radio networks. In 2011 IEEE global telecommunications conference (GLOBECOM 2011), pp. 1, 5, 5–9.

  9. Mohan, A., & Prakriya, S. (2013). Performance of dynamic spectrum access with opportunistic selection mechanisms. In 2013 7th international conference on signal processing and communication systems (ICSPCS) pp. 1,7, 16–18.

  10. Papoulis, A., & Unnikrishna Pillai, S. Probability, random variables, and stochastic processes (4th ed.). New Delhi: Tata McGraw Hill.

  11. Tourki, K., Qaraqe, K., & Alouini, M.-S. (2013). Outage analysis for underlay cognitive networks using incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.

    Article  Google Scholar 

  12. Zhang, Y., Zheng, J., & Chen, H.-H. (2010). Cognitive radio networks: Architectures, protocols, and standards. Boca Raton: CRC Press.

  13. Zhao, Q., & Sadler, B. M. (2007). A survey of dynamic spectrum access. IEEE Signal Processing Magazine, 24(3), 79–89.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Information Technology Research Academy (ITRA) Ministry of Information Technology, Government of India through sponsored project ITRA/15(63)/Mobile/MBSSCRN/01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnav Mohan.

Appendices

Appendix 1

In reference to \(Y={\dfrac{I_{p}}{|g^{II}_{j^{\dagger }l^{\dagger }}|^{2}}}\) in equation (21). CDF of Y can be written as:

$$\begin{aligned} \text{Pr}\left\{ \dfrac{I_{p}}{|g^{II}_{j^{\dagger }l^{\dagger }}|^{2}}<y \right\}&= {} \displaystyle \int \limits _{0}^{\infty }\int \limits _{-\sigma ^{2}}^{y\,x} p_{|g^{II}_{j^{\dagger }l^{\dagger }}|^{2}}(x)\,p_{I_{p}}(z)dx\,dz\nonumber \\&= {} \displaystyle \int \limits _{0}^{\propto }\dfrac{N_{r}\,j_{s}}{\lambda _{g}} \text{exp}\left( -\dfrac{N_{r}\,j_{s}\,x}{\lambda _{g}}\right) \left( 1-\exp \left( \dfrac{-\gamma _{thp}(y\,x+\sigma ^2)}{P_{rp}\lambda _{h}}\right) \right) ^{j_{p}\,N_{r}} dx \end{aligned}$$
(50)

Applying the binomial expansion of the term in the integral, and integrating yields the CDF. Finally, derivative of the CDF yields the PDF expression in (22). The CDF \(F_{X}(x)\) of X in Eq. (23) can be derived similarly.

Appendix 2

On using the PDF of X and Y in (24), it can be seen that \({\mathbb{I}}\) is given by:

$$\begin{aligned} {\mathbb{I}}&= {} -B\int \limits _{0}^{P_{s}^{max}}\dfrac{e^{-\frac{\gamma _{ths}\,m\,\sigma ^{2}}{\lambda _f\,y}}}{\left( \alpha + B\,y\right) ^{2}\left( \dfrac{d}{y}+\dfrac{1}{\lambda _e}\right) }\,dy\nonumber \\&= {} -\dfrac{B}{\alpha ^{2}d}\displaystyle \int \limits _{\frac{1}{P_{s}^{max}}}^{\infty }e^{-\frac{\gamma _{ths}m\sigma ^{2}}{\lambda _f}t} \left( \dfrac{R_{1}}{\left( t+\frac{B}{\alpha }\right) } + \dfrac{R_{2}}{\left( t+\frac{B}{\alpha }\right) ^{2}} + \dfrac{R_{3}}{\left( t+\frac{1}{d\lambda _e}\right) }\right) dt\nonumber \\&\text{where} \nonumber \\ R_{1}&= {} -\dfrac{1}{\left( \dfrac{1}{d\,\lambda _e} - \dfrac{B}{\alpha } \right) ^{2}} ,\;R_{2}=\dfrac{1}{\left( \dfrac{1}{d\,\lambda _e} - \dfrac{B}{\alpha } \right) }, R_{3}=\dfrac{1}{\left( \dfrac{1}{d\,\lambda _e} - \dfrac{B}{\alpha } \right) ^{2}} \end{aligned}$$
(51)

Using Eq. 3.351-4 of [2]), we obtain (27).

Appendix 3

The assumption taken in asymptotic analysis (34) and ergodic capacity analysis (38) follows \(P_{rp}\gg\sigma ^2\). Based on this assumption the CDFs of \(Y=\frac{I_p}{|g^{II}_{{j^\dagger }{l^\dagger }}|^2} = \frac{P_{rp}|h^{II}_{j^{*}l^{*}}|^{2}}{\gamma _{thp}|g^{II}_{{j^\dagger }{l^\dagger }}|^2}\) and \(X=\frac{ |f_{{k^\dagger }{l^\dagger }}^{II}|^2}{P_{rp} |e_{j^*l^*}^{II}|^2}\) are as follows:

$$\begin{aligned} F_X(x) &= {} \sum \limits _{m=0}^{K}(-1)^m{K \atopwithdelims ()m}\dfrac{1}{(1 + C_1x)}\nonumber \\ F_Y(y)&= {} \sum \limits _{l=0}^{j_p\,N_r}(-1)^l{j_p\,N_r \atopwithdelims ()l}\dfrac{1}{(1 + C_2y)} \end{aligned}$$
(52)

where \(C_1=\frac{m\,P_{rp}\,\lambda _e}{\lambda _f}\), and \(C_2=\frac{\lambda _g\,l\,\gamma _{thp}}{\lambda _h\,N_r\,P_{rp}\,j_s}\).

Using the above expressions to evaluate \(p_{os}^{pno}\) in (17), we get:

$$\begin{aligned}&\lim \underset{P_s^{max}\longrightarrow \infty }{p_{os}^{pno}(\gamma _{ths})} =\displaystyle \int \limits _{0}^{\infty }\int \limits _{0}^{\frac{\gamma _{ths}}{y}}p_Y(y)p_X(x)\,dx\,dy\nonumber \\&\quad = \sum \limits _{l=1}^{j_{p}\,N_r}(-1)^l{j_{p}\,N_r \atopwithdelims ()l}\sum \limits _{m=0}^{K}(-1)^m{K \atopwithdelims ()m}{\mathbb{K}} \end{aligned}$$
(53)

where

$$\begin{aligned} {\mathbb{K}}&= {} -C_2\int \limits _{0}^{\infty }\dfrac{dx}{(1+C_2x)^2(1+C_1\frac{\gamma _{ths}}{x})}\nonumber \\&= {} -\dfrac{C_1C_2\gamma _{ths}}{(1-C_1C_2\gamma _{ths})^2}\ln (C_1C_2\gamma _{ths}) - \dfrac{1}{(1-C_1C_2\gamma _{ths})}\nonumber \\&= {} -\dfrac{u}{(1-u)^2}\ln u - \dfrac{1}{(1-u)} \end{aligned}$$
(54)

where \(u=C\gamma _{ths}; \, C=C_1C_2\). Since \(\lim \underset{P_s^{max}\longrightarrow \infty }{p_{os}^{po}}=0\), we have:

$$\begin{aligned}&\lim \limits _{P_{s}^{max}\rightarrow \infty }{p_{os}(\gamma _{ths})}\nonumber \\&\quad =\sum \limits _{j_{p}=1}^{J_p}\text{Pr}\left\{ |\mathcal{J}_{dp}|=j_p\right\} \sum \limits _{j_{s}=1}^{J_s}\text{Pr}\left\{ |\mathcal{J}_{ds}|=j_s\right\} \lim \limits _{P_s^{max}\longrightarrow \infty }{{p_{os}^{pno}}(\gamma _{ths})} \end{aligned}$$
(55)

Appendix 4

At high SNRs when \(\frac{I_p}{|g^{II}_{j^\dagger l^\dagger }|^2}<P_s^{max}\) the expression in (48) is derived as:

$$\begin{aligned} \displaystyle \int \limits _{1}^{\infty }\text{p}_{12}(\gamma )\log _2(\gamma )d\gamma = \sum \limits _{l=1}^{j_pNr}{j_pNr\atopwithdelims ()l}(-1)^{l} \sum \limits _{m=1}^{K}{K\atopwithdelims ()m}(-1)^{m}{\mathbb{N}} \end{aligned}$$
(56)

where

$$\begin{aligned} {\mathbb{N}}&= {} \displaystyle \int \limits _{1}^{\infty }\log _2(1+\gamma )\dfrac{d\left\{ -C_2\displaystyle \int \limits _{0}^{P_s^{max}} \dfrac{dx}{(1 + C_2 x)^2 (1 + C_1 \frac{\gamma }{x})} \right\} }{d\gamma }d\gamma \nonumber \\&= {} \dfrac{\log _2\left\{ \frac{C_1}{C_1 + P_s^{max}}\right\} }{(1 + C_2 P_s^{max})} + \dfrac{\log _2\left\{ \frac{C_1 + C_1C_2P_s^{max}}{C_1+P_s^{max}}\right\} }{(-1 + C_1C_2)} \end{aligned}$$
(57)

Note that \(C_1\) and \(C_2\) are as defined in Sect. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohan, A., Prakriya, S. Performance of a Relay Antenna Selection Based Dynamic Spectrum Sharing Protocol with Opportunistic Selection of Users. Wireless Pers Commun 95, 4497–4515 (2017). https://doi.org/10.1007/s11277-017-4097-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4097-3

Keywords

Navigation