Skip to main content
Log in

Spectrum Sensing Methods for Cognitive Radio Networks: A Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The main spectrum sensing (SS) techniques suitable for cognitive radio networks (CRNs) such as energy, matched filter, covariance and Hadamard ratio-based detectors are analyzed. Principal methods and concepts associated with SS-CRNs are explored while numerical simulation experiments and comparison analysis are interpreted aiming to corroborate those concepts and demonstrate the effectiveness and drawbacks of those well-established SS-CRN techniques and methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Notes

  1. In terms of linear dependence of the number of samples (log scale) increasing with the SNR (in dB) decreasing.

  2. For a better detailed description of the noise model and uncertainty models used in this work, please refer to [35].

  3. The channel scenario case studied herein for the CAV detector.

  4. Actually MfS needs an entire pilot sequence.

References

  1. Anant Sahai, S. M. M., & Tandra, R. (2009). Spectrum sensing: Fundamental limits. Tech. rep., Berkeley University of California. http://www.eecs.berkeley.edu/~sahai/Papers/SensingChapter.pdf.

  2. Axell, E., Leus, G., Larsson, E. G., & Poor, H. V. (2012). Spectrum sensing for cognitive radio : State-of-the-art and recent advances. IEEE Signal Processing Magazine, 29(3), 101–116. doi:10.1109/MSP.2012.2183771.

    Article  Google Scholar 

  3. Bazerque, J. A., & Giannakis, G. B. (2010). Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Transactions on Signal Processing, 58(3), 1847–1862. doi:10.1109/TSP.2009.2038417.

    Article  MathSciNet  Google Scholar 

  4. Bhargavi, D., & Murthy, C. (2010). Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In 2010 IEEE eleventh international workshop on signal processing advances in wireless communications (SPAWC) (pp. 1–5). doi:10.1109/SPAWC.2010.5670882.

  5. Biglieri, E., Goldshimith, A. J., & Greenstein, L. J. (2012). Principles of cognitive radio. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  6. Cabric, D., Mishra, S. M., & Brodersen, R. W. (2004). Implementation issues in spectrum sensing for cognitive radios. In Conference record of the thirty-eighth asilomar conference on signals, systems and computers, 2004 (Vol. 1, pp. 772–776) doi:10.1109/ACSSC.2004.1399240.

  7. Cardoso, L., Debbah, M., Lasaulce, S., Kobayashi, M., & Palicot, J. (2010). Spectrum sensing in cognitive radio networks. In Y. Xiao & F. Hu (Eds.), Cognitive radio networks. Florida: CRC Press.

    Google Scholar 

  8. Chen, R., Park, J. M., & Reed, J. H. (2008). Defense against primary user emulation attacks in cognitive radio networks. IEEE Journal on Selected Areas in Communications, 26(1), 25–37. doi:10.1109/JSAC.2008.080104.

    Article  Google Scholar 

  9. Chung, G., Sridharan, S., Vishwanath, S., & Hwang, C. S. (2012). On the capacity of overlay cognitive radios with partial cognition. IEEE Transacions on Information Theory, 58(5), 2935–2949.

    Article  MathSciNet  MATH  Google Scholar 

  10. Clancy, T. C. (2007). Formalizing the interference temperature model. Wiley InterScience, 7, 1077–1086.

    Google Scholar 

  11. Cohen, D., & Eldar, Y. C. (2014). Sub-nyquist sampling for power spectrum sensing in cognitive radios: A unified approach. IEEE Transactions on Signal Processing, 62(15), 3897–3910. doi:10.1109/TSP.2014.2331613.

    Article  MathSciNet  Google Scholar 

  12. Community, F. C. (2003). Establishment of an interference temperature metric to quantify and manage interference and to expand available unlicensed operation in certain fixed, mobile and satellite frequency bands. Tech. Rep. 03-237, ET Rocket.

  13. Dikmese, S., Sofotasios, P. C., Ihalainen, T., Renfors, M., & Valkama, M. (2015). Efficient energy detection methods for spectrum sensing under non-flat spectral characteristics. IEEE Journal on Selected Areas in Communications, 33(5), 755–770. doi:10.1109/JSAC.2014.2361074.

    Article  Google Scholar 

  14. Farhang-Boroujeny, B. (2008). Filter bank spectrum sensing for cognitive radios. IEEE Transactions on Signal Processing, 56(5), 1801–1811. doi:10.1109/TSP.2007.911490.

    Article  MathSciNet  Google Scholar 

  15. Gavrilovska, L., & Atanasovski, V. (2011). Spectrum sensing framework for cognitive radio networks. Wireless Personal Communications, 59(3), 447–469. doi:10.1007/s11277-011-0239-1.

    Article  Google Scholar 

  16. Geethu, S., & Narayanan, G. (2012). A novel selection based hybrid spectrum sensing technique for cognitive radios. In 2012 2nd international conference on power, control and embedded systems (ICPCES) (pp. 1–6). doi:10.1109/ICPCES.2012.6508114.

  17. Geethu, S., & Narayanan, G. (2013). A novel selection based hybrid spectrum sensing technique for cognitive radios. In 2013 International conference on emerging trends in computing, communication and nanotechnology (ICE-CCN) (pp. 476–480).

  18. Haykin, S., Thomson, D. J., & Reed, J. H. (2009). Spectrum sensing for cognitive radio. Proceedings of the IEEE, 97(5), 849–877. doi:10.1109/JPROC.2009.2015711.

    Article  Google Scholar 

  19. Hernandes, A. G., Kobayashi, R. T., & Abrao, T. (2016). Introduction to cognitive radio newtorks and applications (pp. 46–81). Boca Raton: CRC Press. (chap. 4).

    Google Scholar 

  20. Huang, L., Xiao, Y., So, H. C., & Fang, J. (2015). Accurate performance analysis of hadamard ratio test for robust spectrum sensing. IEEE Transactions on Wireless Communications, 14(2), 750–758. doi:10.1109/TWC.2014.2359223.

    Article  Google Scholar 

  21. Jafar, S. A., & Srinivasa, S. (2007). Capacity limits of cognitive radio with distributed and dynamic spectral activity. IEEE Journal on Selected Areas in Communications, 25(3), 529–537. doi:10.1109/JSAC.2007.070403.

    Article  Google Scholar 

  22. Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions. London: Wiley.

    MATH  Google Scholar 

  23. Khan, A. A., Rehmani, M. H., & Reisslein, M. (2016). Cognitive radio for smart grids: Survey of architectures, spectrum sensing mechanisms, and networking protocols. IEEE Communications Surveys Tutorials, 18(1), 860–898. doi:10.1109/COMST.2015.2481722.

    Article  Google Scholar 

  24. Li, C. M., & Lu, S. H. (2016). Energy-based maximum likelihood spectrum sensing method for the cognitive radio. Wireless Personal Communications, 89(1), 289–302. doi:10.1007/s11277-016-3266-0.

    Article  MathSciNet  Google Scholar 

  25. Mariani, A., Giorgetti, A., & Chiani, M. (2012). Test of independence for cooperative spectrum sensing with uncalibrated receivers. In Global communications conference (GLOBECOM), 2012 IEEE (pp. 1374–1379). doi:10.1109/GLOCOM.2012.6503305.

  26. McDonough, N. R., & Whalen, D. A. (1995). Detection of signals in noise (2nd ed.). Elsevier. http://app.knovel.com/hotlink/toc/id:kpDSNE000A/detection-signals-in/detection-signals-in

  27. Naeem, M., Anpalagan, A., Jaseemudin, M., & Lee, D. C. (2014). Resource allocation techniques in cooperative cognitive radi networks. IEEE Communications Suerveys and Tutorials, 16, 729–744.

    Article  Google Scholar 

  28. Quan, Z., Cui, S., Poor, H. V., & Sayed, A. H. (2008). Collaborative wideband sensing for cognitive radios. IEEE Signal Processing Magazine, 25(6), 60–73. doi:10.1109/MSP.2008.929296.

    Article  Google Scholar 

  29. Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140. doi:10.1109/TSP.2008.2008540.

    Article  MathSciNet  Google Scholar 

  30. Semlali, H., Boumaaz, N., Soulmani, A., Ghammaz, A., & Diouris, J. F. (2014). Energy detection approach for spectrum sensing in cognitive radio systems with the use of random sampling. Wireless Personal Communications, 79(2), 1053–1061. doi:10.1007/s11277-014-1917-6.

    Article  Google Scholar 

  31. Sridhara, K., Chandra, A., & Tripathi, P. S. M. (2008). Spectrum challenges and solutions by cognitive radio: An overview. Wireless Personal Communications, 45(3), 281–291. doi:10.1007/s11277-008-9465-6.

    Article  Google Scholar 

  32. Sun, H., Nallanathan, A., Wang, C. X., & Chen, Y. (2013). Wideband spectrum sensing for cognitive radio networks: A survey. IEEE Wireless Communications, 20(2), 74–81. doi:10.1109/MWC.2013.6507397.

    Article  Google Scholar 

  33. Sun, S., Ju, Y., & Yamao, Y. (2013). Overlay cognitive radio ofdm system for 4g cellular networks. IEEE Wireless Communications, 20(2), 68–73.

    Article  Google Scholar 

  34. Tandra, R., & Sahai, A. (2007). Snr walls for feature detectors. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, 2007. DySPAN 2007 (pp. 559–570). doi:10.1109/DYSPAN.2007.79.

  35. Tandra, R., & Sahai, A. (2008). Snr walls for signal detection. IEEE Journal of Selected Topics in Signal Processing, 2(1), 4–17. doi:10.1109/JSTSP.2007.914879.

    Article  Google Scholar 

  36. Tian, Z., & Giannakis, G. B. (2006). A wavelet approach to wideband spectrum sensing for cognitive radios. In 2006 1st international conference on cognitive radio Oriented wireless networks and communications (pp. 1–5). doi:10.1109/CROWNCOM.2006.363459.

  37. Tian, Z., & Giannakis, G. B. (2007). Compressed sensing for wideband cognitive radios. In 2007 IEEE international conference on acoustics, speech and signal processing-ICASSP ’07 (Vol. 4, pp. IV-1357–IV-1360). doi:10.1109/ICASSP.2007.367330.

  38. Tugnait, J. (2012). On multiple antenna spectrum sensing under noise variance uncertainty and flat fading. IEEE Transactions on Signal Processing, 60(4), 1823–1832. doi:10.1109/TSP.2011.2180721.

    Article  MathSciNet  Google Scholar 

  39. Walck, C. (1998). Hand-book on statistical distributions for experimentalists. In Internal report.

  40. Zeng, F., Li, C., & Tian, Z. (2011). Distributed compressive spectrum sensing in cooperative multihop cognitive networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 37–48. doi:10.1109/JSTSP.2010.2055037.

    Article  Google Scholar 

  41. Zeng, Y., & Liang, Y. C. (2009). Spectrum-sensing algorithms for cognitive radio based on statistical covariances. IEEE Transactions on Vehicular Technology, 58(4), 1804–1815. doi:10.1109/TVT.2008.2005267.

    Article  Google Scholar 

  42. Zhang, R., Liang, Y. C., & Cui, S. (2010). Dynamic resource allocation in cognitive networks. IEEE Signal Processing Magazine, 10, 102–114.

    Article  Google Scholar 

  43. Zhao, G., Ma, J., Li, G., Wu, T., Kwon, Y., Soong, A., et al. (2009). Spatial spectrum holes for cognitive radio with relay-assisted directional transmission. IEEE Transactions on Wireless Communications, 8(10), 5270–5279. doi:10.1109/TWC.2009.081541.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Council for Scientific and Technological Development (CNPq) of Brazil under Grant 304066/2015-0, Fundação Araucária under Grant 302/2012, and in part by State University of Londrina—Paraná State Government (UEL), and CAPES/DS scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taufik Abrão.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Claudino, L., Abrão, T. Spectrum Sensing Methods for Cognitive Radio Networks: A Review. Wireless Pers Commun 95, 5003–5037 (2017). https://doi.org/10.1007/s11277-017-4143-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4143-1

Keywords

Navigation