Skip to main content
Log in

Antennas and Channel Characteristics for Wireless Networks on Chips

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

We review the current state of the art on antennas for use in wireless networks on chips (WiNoCs) and also provide results on wireless channel characteristics in the WiNoC setting—the latter are largely absent from the literature. We first describe the motivation for constructing these miniature networks, aimed at improving efficiency of future multi-processor integrated circuits. We then discuss the implications for antennas: in addition to the usual antenna parameters for communication links (gain, impedance match, pattern), this includes important structural and multiple-access considerations. After a review of the literature and a summary of published antenna characteristics and future challenges, we present example results for a representative structure to illustrate antenna performance and WiNoC channel characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Since virtually nothing has appeared in the literature on practical WiNoC channel characteristics, we do not have an explicit literature review for this area; selected relevant references on this are cited throughout.

  2. Note that this is hence identical to “transmission gain,” but the term path loss is prevalent in the communications literature.

  3. The 2 dB value is arbitrary, and could be adjusted. Consequences of the non-flat channel amplitude response could be required equalization, which we discuss subsequently.

References

  1. Borkar, S. (2007). Thousand core chips: A technology perspective. In Proceedings of 44th design automation conference, San Diego, CA, 4–8 June 2007.

  2. Matolak, D. W., Kodi, A., Kaya, S., DiTomaso, D., Laha, S., & Rayess, W. (2012). Wireless networks-on-chips: Architecture, wireless channel, and devices. IEEE Wireless Communications Magazine, 19(5), 58–65.

    Article  Google Scholar 

  3. Kaya, S., Laha, S., Kodi, A., Ditomaso, D., Matolak, D. W., & Rayess, W. (2013). On ultra-short wireless interconnects for NoCs and SoCs: Bridging the ‘THz Gap’. In IEEE international midwest symposium on circuits and systems, Columbus, OH, 4–7 August 2013.

  4. Ditomaso, D., Kodi, A., Kaya, S., Laha, S., Matolak, D. W., & Rayess, W. (2013). Energy-efficient adaptive wireless NoCs architecture. In NOCS 2013, Tempe, AZ, 21–24 April 2013.

  5. Ganguly, A., Chang, K., Deb, S., Pande, P. P., Belzer, B., & Teuscher, C. (2011). Scalable hybrid wireless network-on-chip architectures for multicore systems. IEEE Transactions on Computers, 60(10), 1485–1502.

    Article  MathSciNet  MATH  Google Scholar 

  6. Lee, S., Tam, S., Pefkianakis, I., Lu, S., Chang, M. F., Guo, C., et al. (2009). A scalable micro wireless interconnect structure for CMPs. In Proceedings of MobiCom’09, Beijing, China, 20–25 September 2009.

  7. Matolak, D. W., Kodi, A., & Kaya, S. (2013). Channel modeling for wireless networks-on-chips. IEEE Communications Magazine, 51(6), 180–186.

    Article  Google Scholar 

  8. Wang, Y., Makadia, D., & Margala, M. (2006). On-chip integrated antennas—the first challenge for reliable on-chip wireless interconnects. In Canadian conference on electrical and computer engineering (pp. 2322–2325), Ottawa, Canada 7–10 May 2006.

  9. He, X., Li, J., Zhang, M., & Qi, S. (2010). Improvement of integrated dipole antenna performance using diamond for intra-chip wireless interconnection. In IEEE International Conference IC Design and Technology (pp. 248–251), Grenoble, France, 2–4 June 2010.

  10. Moriyama, W., Kubota, S., Kimoto, K., Sasaki, N., & Kikkawa T. (2008). On-chip micro-meander-antennas for silicon LSI wireless interconnects. In IEEE international symposium antennas and propagation (pp. 1–4), 5–11 July 2008.

  11. Kim, K., & Ko, K. (1999). Integrated dipole antennas on silicon substrates for intra-chip communication. IEEE Antennas and Propagation Society International Symposium, 3, 1582–1585.

    Google Scholar 

  12. Titz, D., Ben Abdeljelil, F., Jan, S., Ferrero, F., Luxey, C., Brachat, P., et al. (2012). Design and characterization of CMOS on-chip antennas for 60 GHz communications. Radioengineering, 21(1), 324–332.

    Google Scholar 

  13. Singh, G. (2010). Design considerations for rectangular microstrip patch antenna on electromagnetic crystal substrate at terahertz frequency. Infrared Physics and Technology, 53(1), 17–22.

    Article  MathSciNet  Google Scholar 

  14. Uzunkol, M., Gurbuz, O. D., Golcuk, F., & Rebeiz, G. M. (2013). A 0.32 THz SiGe 4 x 4 imaging array using high-efficiency on-chip antennas. IEEE Journal of Solid-State Circuits, 48(9), 2056–2066.

    Article  Google Scholar 

  15. Golcuk, F., Gurbuz, O. D., & Rebeiz, G. M. (2013). A 0.39–0.44 THz 2 x 4 amplifier-quadrupler array with peak EIRP of 3–4 dBm. IEEE Transactions on Microwave Theory and Techniques, 61(12), 4483–4491.

    Article  Google Scholar 

  16. Ojefors, E., Pfeiffer, U. R., Lisauskas, A., & Roskos, H. G. (2009). A 0.65 THz focal-plane array in a quarter-micron CMOS process technology. IEEE Journal on Solid-State Circuits, 44(7), 1968–1976.

    Article  Google Scholar 

  17. Tavakoli, E., Tabandeh, M., & Kaffash, S. (2011). An optimized phased-array antenna for intra-chip communications. In Loughborough antennas and propagation conference (pp. 1–4), Loughborough, UK, 14–15 November 2011.

  18. Deb, S., Ganguly, A., Chang, K., Pande, P., Belzer, B., & Heo, D. (2010). Enhancing performance of network-on-chip architectures with millimeter-wave wireless interconnects. In Proceedings of IEEE international conference application-specific systems, architectures and processors (ASAP 2010) (pp. 73–80), 7–9 July 2010.

  19. Pan, S., Wang, D., & Capolino, F. (2011). Novel high efficiency CMOS on-chip antenna structures at millimeter waves. In IEEE international symposium on antennas and propagation (pp. 907, 910), 3–8 July 2011.

  20. Marnat, L., Carreno, A. A. A., Conchouso, D., Martinez, M. G., Foulds, I. G., & Shamim, A. (2013). New movable plate for efficient millimeter wave vertical on-chip antenna. IEEE Transactions on Antennas and Propagation, 61(4), 1608–1615.

    Article  Google Scholar 

  21. Kubota, S., Kimoto, K., Sasaki, N., Toya, A., & Kikkawa, T. (2011). A novel 10 Gb/s silicon on-chip UWB twiggy antenna for intra-package communication. In IEEE international symposium antennas and propagation (pp. 82–85), 3–8 July 2011.

  22. Yeh, H., Melde, K., & Eisenstadt, W. (2012). Design and packaging of small 60 GHz antenna array for multi-chip communication. In Proceedings of IEEE international conference wireless information technology and systems (ICWITS), Maui, HI, 11–16 November 2012.

  23. Melde, K., Yoo, S., & Yeh, H. (2015). On-chip antenna arrays for multi-chip RF data transmission. In European conference on antennas and propagation (pp. 1–4), 13–17 April 2015.

  24. Kikkawa, T., Kimoto, K., & Kubota, S. (2010). Analysis of silicon on-chip integrated antennas for intra- and inter-chip wireless interconnects. In European solid-state device research conference (pp. 114–117), Seville, Spain, 14–16 September 2010.

  25. Yordanov, H., & Russer, P. (2010). Area-efficient integrated antennas for inter-chip communication. In European Microwave Conference (pp. 401–404), Paris, France, 28–30 September 2010.

  26. Wu-Hsin, C., Sanghoon, J., Sayilir, S., Willmot, R., Tae-Young, C., Dowon, K., et al. (2009). A 6-Gb/s wireless inter-chip data link using 43-GHz transceivers and bond-wire antennas. IEEE Journal of Solid-State Circuits, 44(10), 2711–2721.

    Article  Google Scholar 

  27. Lin, J., et al. (2007). Communication using antennas fabricated in silicon integrated circuits. IEEE Journal of Solid-State Circuits, 42(8), 1678–1687.

    Article  Google Scholar 

  28. Cheema, H. M., & Shamim, A. (2013). The last barrier: On-chip antennas. IEEE Microwave Magazine, 14(1), 79–91.

    Article  Google Scholar 

  29. Radecki, A., Yuxiang, Y., Miura, N., Aikawa, I., Take, Y., Ishikuro, H., et al. (2012). Simultaneous 6-Gb/s data and 10-mW power transmission using nested clover coils for noncontact memory card. IEEE Journal Solid-State Circuits, 47(10), 2484–2495.

    Article  Google Scholar 

  30. Keller, S. D., Palmer, W. D., & Joines, W. T. (2010). Digitally driven antenna for HF transmission. IEEE Transactions on Microwave Theory and Techniques, 58(9), 2362–2367.

    Article  Google Scholar 

  31. Davoyan, A. R., Maksymov, I. S., & Kivshar, Y. S. (2011). Tapered plasmonic Yagi-Uda nanoantennas for emission enhancement and broadband communication. In International quantum electronics conference IQEC/CLEO Pacific Rim 2011 (pp. 646–648), Sydney, Australia, 28 August–1 September 2011.

  32. Nenzi, P., Tripaldi, F., Varlamava, V., Palma, F., & Balucani, M. (2012). On-chip THz 3D antennas. In 2012 IEEE 62nd electronic components and technology conference (ECTC) (pp. 102–108), 29 May–1 June 1 2012.

  33. Cain, J. (2013). Vice President, Platform Engineering Group, Cisco Systems, private communication, University of South Carolina Department of Electrical Engineering Seminar, 25 November 2013.

  34. Cideciyan, R. D., Gustlin, M., Li, M. P., Wang, J., & Qant, Z. (2013). Next generation backplane and copper cable challenges. IEEE Communications Magazine, 51(12), 130–136.

    Article  Google Scholar 

  35. Proakis, J. G., & Salehi, M. (2007). Digital communications (5th ed.). New York, NY: McGraw-Hill.

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank ANSYS, Inc., for the generous use of the HFSS® software. This research was supported by the NSF Award ECCS-1129010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Rayess.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rayess, W., Matolak, D.W., Kaya, S. et al. Antennas and Channel Characteristics for Wireless Networks on Chips. Wireless Pers Commun 95, 5039–5056 (2017). https://doi.org/10.1007/s11277-017-4144-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4144-0

Keywords

Navigation