Skip to main content
Log in

Development of PSO-ANN Ensemble Hybrid Algorithm and Its Application in Compact Crown Circular Fractal Patch Antenna Design

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The traditional methods of designing antennas are not suitable in case of fractal antennas due to non availability of accurate mathematical design expressions. Recently, ANN model relating the physical and electromagnetic parameters of the fractal antenna to be designed is used as objective function of the optimization algorithm and it has been shown as an effective approach. In presented paper, ANN ensemble model has been used as the objective function of a PSO algorithm to calculate the optimal dimensions of a circular fractal antenna for desired resonant frequency. It has been established that ANN ensemble has better performance than the constituent ANN models. The design accuracy of the proposed hybrid algorithm is validated through the simulation and experimental results of the designed antenna. The size reduction capability of the proposed fractal antenna is used to design an antenna for 5.8 GHz WLAN band with a size reduction of 41.64% compared to simple circular microstrip antenna. The miniaturization of the antenna will lead to the design of compact devices for wireless communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anuradha, Patnaik, A., & Sinha, S. N. (2011). Design of custom-made fractal multi-band antennas using ANN–PSO. IEEE Antennas and Propagation Magazine, 53(4), 94–101.

    Article  Google Scholar 

  2. Werner, D. H., Werner, P. L., & Church, K. H. (2001). Genetically engineered multiband fractal antennas. Electronics Letters, 37(19), 1150–1151.

    Article  Google Scholar 

  3. Pantoja, M. F., Ruiz, F. G., Bretones, A. R., Martín, R. G., González-Arbesú, J. M., Romeu, J., et al. (2003). GA Design of wire pre-fractal antennas and comparison with other euclidean geometries. IEEE Antennas and Wireless Propagation Letters, 2, 238–241.

    Article  Google Scholar 

  4. Dehkhoda, P., & Tavakoli, A. (2004). A crown square microstrip fractal antenna. In Proceedings of the IEEE AP-S international symposium (Vol. 3, pp. 2396–2399).

  5. Azaro, R., Boato, G., Donelli, M., Franceschini, G., Martini, A., & Massa, A. (2005). Design of miniaturised ISM–band fractal antenna. Electronics Letters, 41(14), 785–786.

    Article  Google Scholar 

  6. Franceschini, D., Azaro, R., Manica, L., & Massa, A. (2006). A miniaturization process of an antenna with pre-fractal geometry by means of a particle swarm optimization. In Proceedings of IEEE antennas and propagation society international symposium (pp. 3539–3542).

  7. Ghatak, R., Mishra, R. K., & Poddar, D. R. (2007). Optimization of a Sierpinski carpet pre-fractal planar monopole antenna using real coded genetic algorithm for wideband application. In Proceedings of IEEE applied electromagnetics conference (pp. 1–4).

  8. Azaro, R., Debiasi, L., Zeni, E., Benedetti, M., Rocca, P., & Massa, A. (2009). A hybrid prefractal three-band antenna for multistandard mobile wireless applications. IEEE Antennas and Wireless Propagation Letters, 8, 905–908.

    Article  Google Scholar 

  9. Lizzi, L., Viani, F., Zeni, E., & Massa, A. (2009). A DVBH/GSM/UMTS planar antenna for multimode wireless devices. IEEE Antennas and Wireless Propagation Letters, 8, 568–571.

    Article  Google Scholar 

  10. Lizzi, L., & Massa, A. (2011). Dual-band printed fractal monopole antenna for LTE applications. IEEE Antennas and Wireless Propagation Letters, 10, 760–763.

    Article  Google Scholar 

  11. Weng, W.-C., & Hung, C.-L. (2014). An H-fractal antenna for multiband applications. IEEE Antennas and Wireless Propagation Letters, 13, 1705–1708.

    Article  Google Scholar 

  12. Ghatak, R., Karmakar, A., & Poddar, D. R. (2015). Evolutionary optimization of Haferman carpet fractal patterned antenna array. International Journal of RF and Microwave Computer-Aided Engineering, 25(8), 719–729.

    Article  Google Scholar 

  13. Rezagholi A. & Mohajeri F. (2016). Directivity optimization of fractal antenna arrays using PSO algorithm. In Proceedings of the Iranian conference on electrical engineering (pp. 1224–1228).

  14. Khuntia, B., Pattnaik, S. S., Panda, D. C., Neog, D. K., Devi, S., & Dutta, M. (2005). Genetic algorithm with artificial neural networks as its fitness function to design rectangular microstrip antenna on thick substrate. Microwave and Optical Technology Letters, 44(2), 144–146.

    Article  Google Scholar 

  15. Ouedraogo, R. O., Rothwell, E. J., Diaz, A. R., Fuchi, K., & Temme, A. (2012). Miniaturization of patch antennas using a metamaterial-inspired technique. IEEE Transactions on Antennas and Propagation, 60(5), 2175–2182.

    Article  Google Scholar 

  16. Maqsood, I., Khan, M. R., & Abraham, A. (2004). An ensemble of neural networks for weather forecasting. Neural Computing and Applications, 13(2), 112–122.

    Article  Google Scholar 

  17. Hansen, L. K., & Salamon, P. (1990). Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(10), 993–1001.

    Article  Google Scholar 

  18. Yang, J., Zeng, X., Zhong, S., & Wu, S. (2013). Effective neural network ensemble approach for improving generalization performance. IEEE Transactions on Neural Networks and Learning Systems, 24(6), 878–887.

    Article  Google Scholar 

  19. Yang, S., & Browne, A. (2004). Neural network ensembles: combining multiple models for enhanced performance using a multistage approach. Expert Systems, 21(5), 279–288.

    Article  Google Scholar 

  20. Yao, X., & Islam, M. M. (2008). Evolving artificial neural network ensembles. IEEE Computational Intelligence Magazine, 3(1), 31–42.

    Article  Google Scholar 

  21. Granitto, P. M., Verdes, P. F., Navone, H. D., & Ceccatto, H. A. (2002). Aggregation algorithms for neural network ensemble construction, In Proceedings of the Brazilian symposium on neural networks (pp. 178–183).

  22. Yu-Bo, T., Su-Ling, Z., & Jing-Yi, L. (2011). Modeling resonant frequency of microstrip antenna based on neural network ensemble. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 24(1), 78–88.

    Article  MATH  Google Scholar 

  23. Tiehong, T., & Zheng, Z. (2003). A novel multiband antenna: fractal antenna. In Proceedings of the IEEE international conference on communication technology (pp. 1907–1910).

  24. Werner, D. H., & Ganguly, S. (2003). An overview of fractal antenna engineering research. IEEE Antennas and Propagation Magazine, 45(1), 38–57.

    Article  Google Scholar 

  25. Song, N. S., Chin, K. L., Liang, D. B. B., & Anyi, M. (2006). Design of broadband dual-frequency microstrip patch antenna with modified Sierpinski fractal geometry, In Proceedings of the 10 th IEEE international conference on communication systems, Singapore (pp. 1–5).

  26. Radonic, V., Palmer, K., Stojanovic, G., & Crnojevic-Bengin, V. (2012). Flexible Sierpinski carpet fractal antenna on a Hilbert slot patterned ground. International Journal of Antennas and Propagation, 2012, 1–7.

    Article  Google Scholar 

  27. Jalali, M., & Sedghi, T. (2014). Very compact UWB CPW-fed fractal antenna using modified ground plane and unit cells. Microwave and Optical Technology Letters, 56(4), 851–854.

    Article  Google Scholar 

  28. Liu, G., Xu, L., & Wu, Z. (2013). Miniaturised wideband circularly-polarised log-periodic Koch fractal antenna. Electroics Letters, 49(21), 1315–1316.

    Article  Google Scholar 

  29. Oraizi, H., & Hedayati, S. (2011). Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals. IEEE Antennas and Wireless Propagation Letters, 10, 67–70.

    Article  Google Scholar 

  30. El-Hameed, A. S. A., Salem, D. A., Abdallah, E. A., & Hashish, E. A. (2013). Fractal quasi-self complimentary miniaturized UWB antenna. In Proceedings of the IEEE antennas and propagation society international symposium, Orlando, FL (pp. 15–16).

  31. Kumar, Y., & Singh, S. (2015). A compact multiband hybrid fractal antenna for multistandard mobile wireless applications. Wireless Personal Communications, 84(1), 57–67.

    Article  Google Scholar 

  32. Chen, W. L., & Wang, G. M. (2008). Small size edge-fed Sierpinski carpet microstrip patch antennas. Progress in Electromagnetics Research C, 3, 195–202.

    Article  Google Scholar 

  33. Amini, A., Oraizi, H., & Zadeh, M. A. C. (2015). Miniaturized UWB log-periodic square fractal antenna. IEEE Antennas and Wireless Propagation Letters, 14, 1322–1325.

    Article  Google Scholar 

  34. Taghadosi, M., Albasha, L., Qaddoumi, N., & Ali, M. (2015). Miniaturised printed elliptical nested fractal multiband antenna for energy harvesting applications. IET Microwaves, Antennas and Propagation, 9(10), 1045–1053.

    Article  Google Scholar 

  35. Rahman, N. A. A., Jamlos, M. F., Lago, H., Jamlos, M. A., Soh, P. J., & Al-Hadi, A. A. (2015). Reduced size of slotted-fractal Koch log-periodic antenna for 802.11af TVWS application. Microwave and Optical Technology Letters, 57(12), 2732–2737.

    Article  Google Scholar 

  36. Verma, R. K., Deepika, & Yadava, R. L. (2016). Design and fabrication of window shaped fractal antenna for RFID. In Proceedings of the international conference on reliability, infocom technologies and optimization, (pp. 61–63).

  37. Ihamji, M., Abdelmounim, E., Zbitou, J., Bennis, H., & Latrach, M. (2016). Novel design of a miniature fractal microstrip CPW fed antenna for RFID reader, In Proceedings of the international conference on wireless networks and mobile communications (pp. 95–98).

  38. Ding, M., Jin, R., Geng, J., Wu, Q., & Wang, W. (2006). Design of a CPW-fed ultra wideband crown circular fractal antenna. In Proceedings of the IEEE AP-S International Symposium, (pp. 2049–2052).

  39. Yong, W., & Shaobin, L. (2008). A new modified crown square fractal antenna. In Proceedings of the international conference on microwave millimeter wave technology, (Vol. 1, pp. 400–402).

  40. Haupt, R. L. (1995). An introduction to genetic algorithms for electromagnetic. IEEE Antennas and Propagation Magazine, 37(2), 7–15.

    Article  Google Scholar 

  41. Hoorfar, A. (2007). Evolutionary programming in electromagnetic optimization: a review. IEEE Transactions on Antennas and Propagation, 55(3), 523–537.

    Article  Google Scholar 

  42. Zhang, Q.-J., Gupta, K. C., & Devabhaktuni, V. K. (2003). Artificial neural networks for RF and microwave design—from theory to practice. IEEE Transactions on Microwave Theory and Techniques, 51(4), 1339–1350.

    Article  Google Scholar 

  43. Igelnik, B., Pao, Y.-H., LeClair, S. R., & Shen, C. Y. (1999). The ensemble approach to neural-network learning and generalization. IEEE Transactions on Neural Networks, 10(1), 19–30.

    Article  Google Scholar 

  44. Ueda, N. (2000). Optimal linear combination of neural networks for improving classification performance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(2), 207–215.

    Article  MathSciNet  Google Scholar 

  45. Islam, M. M., Yao, X., & Murase, K. (2003). A constructive algorithm for training cooperative neural network ensembles. IEEE Transactions on Neural Networks, 14(4), 820–834.

    Article  Google Scholar 

  46. Neto, A. F., Canuto, A. M. P., Goldbarg, E. F. G., & Goldbarg, M. C. (2011). Optimization techniques for the selection of members and attributes in ensemble systems. In Proceedings of the IEEE congress on evolutionary computation, New Orleans, LA (pp. 1912–1919).

  47. Islam, M. M., Yao, X., Nirjon, S. M. S., Islam, M. A., & Murase, K. (2008). Bagging and Boosting Negatively Correlated Neural Networks. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics, 38(3), 771–784.

    Article  Google Scholar 

  48. Zhou, Z. -H., Wu, J. -X., Jiang, Y., & Chen, S. -F. (2001). Genetic algorithm based selective neural network ensemble. In Proceedings of international joint conference on artificial intelligence, Seattle, WA (pp. 797–802).

  49. Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE conference on neural networks IV, Piscataway, NJ (pp. 1942–1948).

  50. Pérez, J. R., & Basterrechea, J. (2007). Comparison of different heuristic optimization methods for near-field antenna measurements. IEEE Transactions on Antennas and Propagation, 55(3), 549–555.

    Article  Google Scholar 

  51. Robinson, J., & Rahmat-Samii, Y. (2004). Particle swarm optimization in electromagnetic. IEEE Transactions on Antennas and Propagation, 52(2), 397–407.

    Article  MathSciNet  Google Scholar 

  52. Boeringer, D. W., & Werner, D. H. (2004). Particle swarm optimization versus genetic algorithms for phased array synthesis. IEEE Transactions on Antennas and Propagation, 52(3), 771–779.

    Article  Google Scholar 

  53. Ciuprina, G., Ioan, D., & Munteanu, I. (2002). Use of intelligent-particle swarm optimization in electromagnetic. IEEE Transactions on Magnetics, 38(2), 1037–1040.

    Article  Google Scholar 

  54. Liu, W.-C. (2005). Design of a multiband CPW-fed monopole antenna using a particle swarm optimization approach. IEEE Transactions on Antennas and Propagation, 53(10), 3273–3279.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank IKG Punjab Technical University, Jalandhar, India for providing the opportunity to do this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Balwinder Singh Dhaliwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhaliwal, B.S., Pattnaik, S.S. Development of PSO-ANN Ensemble Hybrid Algorithm and Its Application in Compact Crown Circular Fractal Patch Antenna Design. Wireless Pers Commun 96, 135–152 (2017). https://doi.org/10.1007/s11277-017-4157-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4157-8

Keywords

Navigation