Skip to main content
Log in

An Efficient Chaotic Maps-Based Deniable Authentication Group Key Agreement Protocol

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

More than two participants implement communication over the network at the same time, aiming to establish a common session key, and it is named group session communication. Nowadays, many researchers lay emphasis on achieve a perfect group key agreement protocol in order to resist various attacks and complete mutual authentication for every two-party among them. Actually, investigators have overlooked an important issue called insider attack, which the inner participants could disclose the source of the messages to outsider parties. Therefore, in this paper, we present a novel group key agreement protocol with deniable authentication to against insider attack. After achieve the process of deniable authentication, the group participants unable to reveal the source of the messages to another party because any subgroup participants still can simulate the whole transcript process. Meanwhile, our protocol based on chaotic maps algorithm, which enhance the calculation efficiency and realize the goal of privacy protection successful.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bresson, E., Chevassut, O., & Pointcheval, D. (2002). Group Diffie–Hellman key exchange secure against dictionary attacks. Advances in Cryptology, 2501, 497–514.

    MathSciNet  MATH  Google Scholar 

  2. Wang, L. M., & Wu, C. K. (2006). Identity based group key agreement from bilinear pairing. WuHan University Journal of Natural Sciences, 11(6), 1731–1735.

    Article  MathSciNet  MATH  Google Scholar 

  3. Guo, X., & Zhang, J. (2010). Secure group key agreement protocol based on chaotic Hash. Information Sciences, 180(20), 4069–4074.

    Article  MathSciNet  MATH  Google Scholar 

  4. Teng, J. K., Wu, C. K., & Tian, Y. L. (2015). A strongly secure identity-based authenticated group key exchange protocol. Science China Information Sciences, 58(9), 1–12.

    Article  MathSciNet  Google Scholar 

  5. Han, S. (2008). Security of a key agreement protocol based on chaotic maps. Chaos, Solitons and Fractals, 38(3), 764–768.

    Article  MathSciNet  MATH  Google Scholar 

  6. Li, C. C., Chen, C. L., Wu, C. Y., & Huang, S. Y. (2012). An extended chaotic maps-based key agreement protocol with user anonymity. Nonlinear Dynamics, 69(1), 79–87.

    MathSciNet  MATH  Google Scholar 

  7. Xie, Q., Zhao, J. M., & Yu, X. Y. (2013). Chaotic maps-based three-party password-authenticated key agreement scheme. Nonlinear Dynamics, 74(4), 1021–1027.

    Article  MathSciNet  MATH  Google Scholar 

  8. Yau, W. C., & Phan, R. C. W. (2015). Cryptanalysis of a chaotic map-based password-authenticated key agreement protocol using smart cards. Nonlinear Dynamics, 79(2), 809–821.

    Article  MathSciNet  MATH  Google Scholar 

  9. Dwork, C., & Sahai, A. (1998). Concurrent zero-knowledge: Reducing the need for timing constraints. In Advances in Cryptology - CRYPTO ’98, International Cryptology Conference, Santa Barbara, California, USA, August 23-27, 1998, Proceedings (pp. 442–457). DBLP.

  10. Deng, X., Lee, C. H., & Zhu, H. (2001). Deniable authentication protocols. IEE Proceedings on Computers and Digital Techniques, 148(2), 101–104.

    Article  Google Scholar 

  11. Fan, L., Xu, C. X., & Li, J. H. (2002). Deniable authentication protocol based on Diffie-Hellman algorithm. Electronics Letters., 38, 705–706.

    Article  Google Scholar 

  12. Lee, W.-B., Wu, C.-C., & Tsaur, W.-J. (2007). A novel deniable authentication protocol using generalized ElGamal signature scheme. Information Sciences, 177(6), 1376–1381.

    Article  MathSciNet  MATH  Google Scholar 

  13. Li, F., Xiong, P., & Chun, J. (2014). Identity-based deniable authentication for ad hoc networks. Computing, 96(9), 843–853.

    Article  MATH  Google Scholar 

  14. Wang, B., & Song, Z. X. (2009). A non-interactive deniable authentication scheme based on designated verifier proofs. Information Sciences, 179(6), 858–865.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hwang, S. J., & Chao, C. H. (2010). An efficient non-interactive deniable authentication protocol with anonymous sender protection. Journal of Discrete Mathematical Sciences and Cryptography, 13(3), 219–231.

    Article  MATH  Google Scholar 

  16. Li, F., & Takagi, T. (2013). Cryptanalysis and improvement of robust deniable authentication protocol. Wireless Personal communications, 69(4), 1391–1398.

    Article  Google Scholar 

  17. Bohli, J. M., & Steinwandt, R. (2006). Deniable group key agreement. VIETCRYPT, 4341, 298–311.

    MATH  Google Scholar 

  18. Wang, X., & Zhao, J. (2010). An improved key agreement protocol based on chaos. Communications in Nonlinear Science and Numerical Simulation, 15, 4052–4057.

    Article  MathSciNet  MATH  Google Scholar 

  19. Zhang, L. (2008). Cryptanalysis of the public key encryption based on multiple chaotic systems. Chaos, Solitons & Fractals, 37(3), 669–674.

    Article  MathSciNet  MATH  Google Scholar 

  20. Tsai, J. L. (2011). A novel authenticated group key agreement protocol for mobile environment. Annals of Telecommunications, 66(11-12), 663–669.

    Article  Google Scholar 

  21. Xu, C., Hua, G., Li, Z., & Mu, Y. (2014). Affiliation hiding authenticated asymmetric group key agreement based on short signature. The Computer Journal, 57(10), 1580–1590.

    Article  Google Scholar 

  22. Teng, J., & Wu, C. (2012). A provable authenticated certificateless group key agreement with constant rounds. Communications and Networks, 14(1), 104–110.

    Article  Google Scholar 

  23. Kocarev, L., & Lian, S. (2011). Chaos-based cryptography: Theory, algorithms and applications (pp 53–54). Springer.

  24. Barreto, P., Lynn, B. & Scott, M. (2004). On the selection of pairing-friendly groups, In: Selected areas in cryptography, LNCS (Vol. 3006, pp. 17–25). Springer.

  25. Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE Transaction on Information Theory, 22(6), 644–654.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Liaoning Provincial Natural Science Foundation of China (Grant No. 201602680).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Zhang, Y. An Efficient Chaotic Maps-Based Deniable Authentication Group Key Agreement Protocol. Wireless Pers Commun 96, 217–229 (2017). https://doi.org/10.1007/s11277-017-4163-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4163-x

Keywords

Navigation