Skip to main content
Log in

On the Outage Performance of Reactive Relay Selection in Cooperative Cognitive Networks Over Nakagami-m Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper evaluates outage performance of reactive relay selection in cognitive radio networks over Nakagami-m fading channels under consideration of imperfect channel information on both interference and transmission channels, peak transmit power constraint, long-term power constraint, interference from primary users (PUs), and direct channel between secondary source and destination. Toward this end, power allocation for secondary transmitters is first proposed to satisfy both power constraints and account for imperfect Nakagami-m channel information and interference from PUs. Then, exact closed-form outage probability representation for secondary destination is suggested to promptly assess system performance and provide useful insights into performance limits. Various results show validity of the proposed expressions, substantial system performance degradation due to imperfect channel information and interference from PUs, error floor in secondary network, performance trade-off between secondary and primary networks, and considerable performance enhancement with respect to the increase in the number of secondary relays and larger fading severity parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. As mentioned before, the current paper focuses on DF relays in cooperative cognitive networks and so, relay selection schemes with AF relays (e.g., [28,29,30]) or in dual-hop cognitive networks (e.g., [31,32,33,34]) are not necessarily surveyed.

  2. Effect of ICI in underlay cognitive networks was studied in different aspects. More specifically, [35,36,37,38] investigated relay non-selection; [39, 40] analyzed AF relay selection; [41] studies direct transmission (i.e., no relay). Because this paper focuses on reactive relay selection in underlay DF cooperative cognitive networks, literature related to all above-mentioned aspects in [35,36,37,38,39,40,41] should not be further surveyed.

  3. Partial relay selection selects the relay with the largest SNR from the source.

  4. Effect of imperfect Nakagami-m channel information on relay non-selection in underlay DF cooperative cognitive networks was analyzed in [47] without considering interference from PUs and long-term power constraint.

  5. \(x\sim {{\mathcal {CN}}}(a, v)\) denotes a circular symmetric complex Gaussian random variable with mean a and variance v.

  6. The larger the value of \(\rho _{trp}\), the better the channel estimation (\(\rho _{trp}=\infty \) means perfect channel information).

  7. The error floor level is straightforwardly computed by using (19) where power of secondary transmitters is calculated with the flow chart in Fig. 2 but bypassing steps related to \({ {{F_{{\eta _{LLp}}}}\left( {{\alpha _L}} \right) } | _{{P_i} = \overline{P}_i}}\) and performing the binary search within the interval \([0, \infty ]\).

  8. Very large values of \(P_L/N_0\) is illustrated to see entire outage behavior of the reactive relay selection in cooperative cognitive networks.

References

  1. FCC. (Nov. 2002). Spectrum policy task force report. ET Docket 02-135.

  2. Mitola, J., III (8 May 2000). Cognitive radio: An integrated agent architecture for software defined radio. Royal Institute of Technology (KTH).

  3. Mokari, N., Parsaeefard, S., Saeedi, H., Azmi, P., & Hossain, E. (2015). Secure robust ergodic uplink resource allocation in relay-assisted cognitive radio networks. IEEE Transactions on Signal Processing, 63(2), 291–304.

    Article  MathSciNet  Google Scholar 

  4. Hanif, M., Yang, H. C., & Alouini, M. S. (2015). Receive antenna selection for underlay cognitive radio with instantaneous interference constraint. IEEE Signal Processing Letters, 22(6), 738–742.

    Article  Google Scholar 

  5. Liping, L., Zhang, P., Zhang, G., & Qin, J. (2011). Outage performance for cognitive relay networks with underlay spectrum sharing. IEEE Communications Letters, 15(7), 710–712.

    Article  Google Scholar 

  6. Bao, V. N. Q., & Duong, T. Q. (2012). Exact outage probability of cognitive underlay DF relay networks with best relay selection. IEEE Communications Letters, E95–B(6), 2169–2173.

    Google Scholar 

  7. Si, J., Li, Z., Huang, H., Chen, J., & Gao, R. (2012). Capacity analysis of cognitive relay networks with the PU’s interference. IEEE Communications Letters, 16(12), 2020–2023.

    Article  Google Scholar 

  8. Yan, Z., Zhang, X., & Wang, W. (2011). Exact outage performance of cognitive relay networks with maximum transmit power limits. IEEE Communications Letters, 15(12), 1317–1319.

    Article  Google Scholar 

  9. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10(2), 390–395.

    Article  Google Scholar 

  10. Zhang, X., Yan, Z., Gao, Y., & Wang, W. (2013). On the study of outage performance for cognitive relay networks (CRN) with the \(N\)th best-relay selection in Rayleigh-fading channels. IEEE Wireless Communications Letters, 2(1), 110–113.

    Article  Google Scholar 

  11. Hong, J. P., Hong, B., Ban, T. W., & Choi, W. (2012). On the cooperative diversity gain in underlay cognitive radio systems. IEEE Transactions on Communications, 60(1), 209–219.

    Article  Google Scholar 

  12. Xing, Z., Yan, Z., Zhi, Y., Jia, X., & Wenbo, W. (2015). Performance analysis of cognitive relay networks over Nakagami-\(m\) fading channels. IEEE Journal on Selected Areas in Communications, 33(5), 865–877.

    Article  Google Scholar 

  13. Tourki, K., Qaraqe, K. A., & Alouini, M. S. (2013). Outage analysis for underlay cognitive networks using incremental regenerative relaying. IEEE Transactions on Vehicular Technology, 62(2), 721–734.

    Article  Google Scholar 

  14. Si, J., Li, Z., Chen, X., Hao, B. J., & Liu, Z. J. (2011). On the performance of cognitive relay networks under primary user’s outage constraint. IEEE Communications Letters, 15(4), 422–424.

    Article  Google Scholar 

  15. Sibomana, L., Tran, H., Zepernick, H. J., & Kabiri, C. (24–27 Jun. 2013). On non-zero secrecy capacity and outage probability of cognitive radio networks. In Proc. WPMC (pp. 1–6). New Jersey.

  16. Kabiri, C., Zepernick, H. J., Sibomana, L., & Tran, H. (15–17 Oct. 2013). On the performance of cognitive radio networks with DF relay assistance under primary outage constraint using SC and MRC. In Proc. IEEE ATC. (pp. 12–17). HoChiMinh City.

  17. Tran, H., Zepernick, H. J., & Thai, C. D. T. (2–5 July 2013). Outage performance of cognitive radio networks under outage constraint of multiple primary users and transmit power constraint of secondary user. In Proc. IEEE ICUFN (pp. 631–635). DaNang.

  18. Tran, H., Hagos, M. A., Mohamed, M., & Zepernick, H. J. (21–24 Jan. 2013). Impact of primary networks on the performance of secondary networks. In Proc. IEEE ComManTel (pp. 43–48). HCM City.

  19. Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine, 42, 74–80.

    Article  Google Scholar 

  20. Bletsas, A., Khisti, A., Reed, D. P., & Lippman, A. (2006). Simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 24(3), 659–672.

    Article  Google Scholar 

  21. Sakran, H., Shokair, M., Nasr, O., El-Rabaie, S., & El-Azm, A. A. (2012). Proposed relay selection scheme for physical layer security in cognitive radio networks. IET Communications, 6(16), 2676–2687.

    Article  MathSciNet  Google Scholar 

  22. Chang, C. W., Lin, P. H., & Su, S. L. (1–3 Jun. 2011). A low-interference relay selection for decode-and-forward cooperative network in underlay cognitive radio. In Proc. IEEE CROWNCOM (pp. 306–310). Osaka.

  23. Kong, A. H. Y., & Lyum, K. (11–13 Oct. 2010). Cooperative relaying in interference limited cognitive radio networks. In Proc. IEEE WiMob (pp. 280–285). Niagara Falls.

  24. Zhang, Y., Xie, Y., Liu, Y., Feng, Z., Zhang, P., & Wei, Z. (24–27 Sep. 2012). Outage probability of cognitive relay network with transmit power and interference constraints. In Proc. WPMC (pp. 1–5). Taipei.

  25. Guimaraes, F. R. V., da Costa, D. B., Tsiftsis, T. A., Cavalcante, C. C., & Karagiannidis, G. K. (2014). Multi-user and multi-relay cognitive radio networks under spectrum sharing constraints. IEEE Transactions on Vehicular Technology, 63(1), 433–439.

    Article  Google Scholar 

  26. Jing, T., Zhu, S., Li, H., Xing, X., Cheng, X., Huo, Y., et al. (2015). Cooperative relay selection in cognitive radio networks. IEEE Transactions on Vehicular Technology, 64(5), 1872–1881.

    Article  Google Scholar 

  27. Guimaraes, F. R. V., da Costa, D. B., Benjillali, M., Tsiftsis, T. A., & Karagiannidis, G. K. (9–13 Jun. 2013). Best relay selection in cooperative spectrum sharing systems with multiple primary users. In Proc. IEEE (pp. 2661–2665). Budapest.

  28. Minghua, X., & Aissa, S. (2012). Cooperative AF relaying in spectrum-sharing systems: Outage probability analysis under co-channel interferences and relay selection. IEEE Transactions on Communications, 60(11), 3252–3262.

    Article  Google Scholar 

  29. Zhong, B., Zhang, Z., Zhang, X., Wang, J., & Long, K. (2013). Partial relay selection with fixed-gain relays and outdated CSI in underlay cognitive networks. IEEE Transactions on Vehicular Technology, 62(9), 4696–4701.

    Article  Google Scholar 

  30. Seyfi, M., Muhaidat, S., & Liang, J. (2013). Relay selection in cognitive radio networks with interference constraints. IET Communications, 7(10), 922–930.

    Article  Google Scholar 

  31. Chamkhia, H., Hasna, M. O., Hamila, R., & Hussain, S. I. (9–12 Sep. 2012). Performance analysis of relay selection schemes in underlay cognitive networks with decode and forward relaying. In Proc. IEEE PIMRC (pp. 1552–1558). Sydney.

  32. Giang, N. H., Bao, V. N. Q., & Le, H. N. (15–17 Oct. 2013). Cognitive underlay communications with imperfect CSI: Network design and performance analysis. In Proc. IEEE ATC (pp. 18–22) HoChiMinh City.

  33. Si, J., Huang, H., Li, Z., Hao, B., & Gao, R. (2014). Performance analysis of adaptive modulation in cognitive relay network with cooperative spectrum sensing. IEEE Transactions on Communications, 62(7), 2198–2211.

    Article  Google Scholar 

  34. Kim, K. J., Duong, T. Q., & Tran, X. N. (2012). Performance analysis of cognitive spectrum-sharing single-carrier systems with relay selection. IEEE Transactions on Signal Processing, 60(12), 6435–6449.

    Article  MathSciNet  Google Scholar 

  35. Khuong, H. V. (2014). Impact of imperfect channel information on the performance of underlay cognitive DF multi-hop systems. Wireless Personal Communications, 74(2), 487–498.

    Article  MathSciNet  Google Scholar 

  36. Khuong, H. V. (2013). Exact outage analysis of underlay cooperative cognitive networks with maximum transmit-and-interference power constraints and erroneous channel information. Transactions on Emerging Telecommunications Technologies, 24(7–8), 772–788.

    Google Scholar 

  37. Bao, V. N. Q., Duong, T. Q., & Chintha, T. (2013). On the performance of cognitive underlay multihop networks with imperfect channel state information. IEEE Transactions on Communications, 61(12), 4864–4873.

    Article  Google Scholar 

  38. Khuong, H. V., & Sofotasios, P. C. (2013). Exact bit-error-rate analysis of underlay decode-and-forward multi-hop cognitive networks with estimation errors. IET Communications, 7(18), 2122–2132.

    Article  Google Scholar 

  39. Zhong, B., Zhang, X., Li, Y., Zhang, Z., & Long, K. (7–10 Apr. 2013). Impact of partial relay selection on the capacity of communications systems with outdated CSI and adaptive transmission techniques. In Proc. IEEE WCNC (pp. 3720–3725). Shanghai.

  40. Chen, J., Si, J., Li, Z., & Huang, H. (2012). On the performance of spectrum sharing cognitive relay networks with imperfect CSI. IEEE Communications Letters, 16, 1002–1005.

    Article  Google Scholar 

  41. Suraweera, H. A., Smith, P. J., & Shafi, M. (2010). Capacity limits and performance analysis of cognitive radio with imperfect channel knowledge. IEEE Transactions on Vehicular Technology, 59, 1811–1822.

    Article  Google Scholar 

  42. Ding, H., Ge, J., da Costa, D. B., & Jiang, Z. (2011). Asymptotic analysis of cooperative diversity systems with relay selection in a spectrum-sharing scenario. IEEE Transactions on Vehicular Technology, 60, 457–472.

    Article  Google Scholar 

  43. Zhang, X., Xing, J., Yan, Z., Gao, Y., & Wang, W. (2013). Outage performance study of cognitive relay networks with imperfect channel knowledge. IEEE Communications Letters, 17(1), 27–30.

    Article  Google Scholar 

  44. Wu, Q., Zhang, Z., & Wang, J. (2013). Outage analysis of cognitive relay networks with relay selection under imperfect CSI environment. IEEE Communications Letters, 17(7), 1297–1300.

    Article  Google Scholar 

  45. Thanh, T. L., Bao, V. N. Q., & An, B. (15–17 Oct. 2013). On the performance of outage probability in underlay cognitive radio with imperfect CSI. In Proc. IEEE ATC (pp. 125–130). HoChiMinh City.

  46. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). London: Wiley.

    Google Scholar 

  47. Khuong, H.-V., Sofotasios, P. C., & Freear, S. (2014). Underlay cooperative cognitive networks with imperfect Nakagami-\(m\) fading channel information and strict transmit power constraint: Interference statistics and outage probability analysis. Journal of Communications and Networks, 16(1), 10–17.

    Article  Google Scholar 

  48. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.

    Article  Google Scholar 

  49. Wang, L., Cai, Y., & Yang, W. (2012). On the fnite-SNR DMT of two-way AF relaying with imperfect CSI. IEEE Wireless Communications Letters, 1, 161–164.

    Article  Google Scholar 

  50. Vucetic, B., & Yuan, J. (2003). Space–time coding. London: Wiley.

    Book  Google Scholar 

  51. Gradshteyn, I. S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). San Diego, CA: Academic.

    MATH  Google Scholar 

  52. Zhong, C., Ratnarajah, T., & Wong, K. K. (2011). Outage analysis of decode-and-forward cognitive dual-hop systems with the interference constraint in Nakagami-m fading channels. IEEE Transactions on Vehicular Technology, 60, 2875–2879.

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Vietnam National University HoChiMinh City (VNU-HCM) under grant number B2017-20-04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khuong Ho-Van.

Appendices

Appendix 1: Proof of Theorem 1

Both \(\eta _{LL1}\) in (9) and \(\eta _{LL2}\) in (15) can be uniquely expressed as

$$\begin{aligned} {\eta _{LLp}} = \frac{{{{\left| {{{\hat{h}}_{LLp}}} \right| }^2}{P_L}}}{{{\tau _{LLp}}{P_L} + {{\left| {{h_{iLp}}} \right| }^2}{P_i} + {N_0}}}, \end{aligned}$$
(26)

where \((i,p)=(S,1)\) or \((i,p)=(b,2)\).

The cdf of \(\eta _{LLp}\) is represented as

$$\begin{aligned} \begin{aligned} {F_{{\eta _{LLp}}}}\left( x \right)&= \Pr \left\{ {{\eta _{LLp}} \le x} \right\} \\&= \Pr \left\{ {\frac{{{{\left| {{{\hat{h}}_{LLp}}} \right| }^2}{P_L}}}{{{\tau _{LLp}}{P_L} + {{\left| {{h_{iLp}}} \right| }^2}{P_i} + {N_0}}} \le x} \right\} \\&= \Pr \left\{ {{{\left| {{{\hat{h}}_{LLp}}} \right| }^2} \le \frac{x}{{{P_L}}}\left( {{\tau _{LLp}}{P_L} + {{\left| {{h_{iLp}}} \right| }^2}{P_i} + {N_0}} \right) } \right\} \\&= \int \limits _0^\infty {\left[ {\underbrace{\int \limits _0^{\frac{x}{{{P_L}}}\left( {{\tau _{LLp}}{P_L} + {P_i}y + {N_0}} \right) } {{f_{{{\left| {{{\hat{h}}_{LLp}}} \right| }^2}}}\left( w \right) dw} }_{\mathcal {M}}} \right] } {f_{{{\left| {{h_{iLp}}} \right| }^2}}}\left( y \right) dy \end{aligned} \end{aligned}$$
(27)

Substituting (6) into (27), one obtains

$$\begin{aligned} \begin{aligned} {\mathcal {M}}&= \int \limits _0^{\frac{x}{{{P_L}}}\left( {{\tau _{LLp}}{P_L} + {P_i}y + {N_0}} \right) } {\frac{{\beta _{LLp}^{{m_{LLp}}}}}{{\Gamma \left( {{m_{LLp}}} \right) }}{w^{{m_{LLp}} - 1}}{e^{ - {\beta _{LLp}}w}}dw} \\&= \frac{1}{{\Gamma \left( {{m_{LLp}}} \right) }}\gamma \left( {{m_{LLp}};\frac{{{\beta _{LLp}}x}}{{{P_L}}}\left( {{\tau _{LLp}}{P_L} + {P_i}y + {N_0}} \right) } \right) , \end{aligned} \end{aligned}$$
(28)

where \(\gamma (a; x)\) is the lower incomplete gamma function [51, Eq. (8.350.1)].

Using the equality

$$\begin{aligned} \gamma \left( {a;x} \right) = \Gamma (a)\left( {1 - {e^{ - x}}\sum \limits _{m = 0}^{a - 1} {\frac{{{x^m}}}{{m!}}} } \right) \end{aligned}$$
(29)

in [52, Eq. (22)] to expand the lower incomplete gamma function in (28) and then substituting the result together with \({f_{{{\left| {{h_{iLp}}} \right| }^2}}}\left( y \right) = {{\Lambda _{iLp}^{{m_{iLp}}}}}{y^{{m_{iLp}} - 1}}{e^{ - {\Lambda _{iLp}}y}}/{{\Gamma \left( {{m_{iLp}}} \right) }}\) in (4) into (27), one obtains

$$\begin{aligned} \begin{aligned} {F_{{\eta _{LLp}}}}\left( x \right)&= \int \limits _0^\infty {\left[ {1 - {e^{ - \frac{{{\beta _{LLp}}\left( {{\tau _{LLp}}{P_L} + {P_i}y + {N_0}} \right) x}}{{{P_L}}}}}\sum \limits _{j = 0}^{{m_{LLp}} - 1} {\frac{1}{{j!}}{{\left( {\frac{{{\beta _{LLp}}\left( {{\tau _{LLp}}{P_L} + {P_i}y + {N_0}} \right) x}}{{{P_L}}}} \right) }^j}} } \right] } \\&\qquad \times \frac{{\Lambda _{iLp}^{{m_{iLp}}}}}{{\Gamma \left( {{m_{iLp}}} \right) }}{y^{{m_{iLp}} - 1}}{e^{ - {\Lambda _{iLp}}y}}dy \\&= \frac{{\Lambda _{iLp}^{{m_{iLp}}}}}{{\Gamma \left( {{m_{iLp}}} \right) }}\int \limits _0^\infty {{y^{{m_{iLp}} - 1}}{e^{ - {\Lambda _{iLp}}y}}} \\&\qquad \times \left[ {1 - {e^{ - \frac{{{\beta _{LLp}}\left( {{\tau _{LLp}}{P_L} + {P_i}y + {N_0}} \right) x}}{{{P_L}}}}}\sum \limits _{j = 0}^{{m_{LLp}} - 1} {\frac{1}{{j!}}{{\left( {\frac{{{\beta _{LLp}}x}}{{{P_L}}}} \right) }^j}\sum \limits _{l = 0}^j {\left( {\begin{array}{l} j \\ l \\ \end{array}} \right) {{\left( {{P_i}y} \right) }^l}{{\left( {{\tau _{LL1}}{P_L} + {N_0}} \right) }^{j - l}}} } } \right] dy, \end{aligned} \end{aligned}$$
(30)

By appropriately arranging terms in (30) and applying the result \(\int \nolimits _0^\infty {{x^n}{e^{ - \mu x}}dx} = n!{\mu ^{ - n - 1}}\), the integral in (30) can be solved in closed-form, making (30) same as (18). Therefore, the proof is completed.

Appendix 2: Proof of Theorem 2

Since \({{\eta _{kD2}}}\)’s are correlated as mentioned in Sect. 2, \({\mathcal {L}}\) should be evaluated through the conditional probability as

$$\begin{aligned} \begin{aligned} {\mathcal {L}}&= \int \limits _0^\infty {\Pr \left\{ {\left. {\mathop {\max }\limits _{k \in {\mathcal {S}}_i^\ell } {\eta _{kD2}}< {\alpha _s}} \right| Y} \right\} } {f_Y}\left( y \right) dy \\&= \int \limits _0^\infty {\underbrace{\prod \limits _{k \in {\mathcal {S}}_i^\ell } {\underbrace{\Pr \left\{ {\left. {{\eta _{kD2}} < {\alpha _s}} \right| Y} \right\} }_{\mathcal {Y}}} }_{\mathcal {G}}} {f_Y}\left( y \right) dy, \end{aligned} \end{aligned}$$
(31)

where \(Y = {\left| {{h_{LD2}}} \right| ^2}\) whose pdf is given in (4) as

$$\begin{aligned} {f_Y}\left( y \right) = \Lambda _{LD2}^{{m_{LD2}}}{y^{{m_{LD2}} - 1}}{e^{ - {\Lambda _{LD2}}y}}/\Gamma \left( {{m_{LD2}}} \right) , \ \ y\ge 0. \end{aligned}$$
(32)

Given \({{\eta _{kD2}}}\) in (13), one immediately obtains

$$\begin{aligned} {\mathcal {Y}} = \Pr \left\{ {{{\left| {{{\hat{h}}_{kD2}}} \right| }^2} \le \frac{{{\alpha _s}\left( {{\tau _{kD2}}{P_k} + {P_L}y + {N_0}} \right) }}{{{P_k}}}} \right\} = \frac{{\gamma \left( {{m_{kD2}};{A_k}y + {B_k}} \right) }}{{\Gamma \left( {{m_{kD2}}} \right) }}, \end{aligned}$$
(33)

where

$$\begin{aligned} \begin{aligned} {A_k}&= {{{\beta _{kD2}}{P_L}{\alpha _s}}}/{{{P_k}}} \\ {B_k}&= {{{\beta _{kD2}}{\alpha _s}\left( {{\tau _{kD2}}{P_k} + {N_0}} \right) }}/{{{P_k}}}. \end{aligned} \end{aligned}$$
(34)

Using (29) to expand the incomplete gamma function in \({\mathcal {Y}}\) and then inserting the result into \({\mathcal {G}}\) in (31), one obtains

$$\begin{aligned} {\mathcal {G}} = \prod \limits _{k \in {\mathcal {S}}_i^\ell } {\left[ {1 - {e^{ - \left( {{A_k}y + {B_k}} \right) }}\sum \limits _{j = 0}^{{m_{kD2}} - 1} {\frac{{{{\left( {{A_k}y + {B_k}} \right) }^j}}}{{j!}}} } \right] }. \end{aligned}$$
(35)

Since relays are closely located as mentioned in Sect. 2, \(m_{kD2}=m_{RD2}\), \(A_k=A_R\), and \(B_k=B_R\), \(\forall k \in {\mathcal {K}}\). Therefore, (35) can be simplified as

$$\begin{aligned} \begin{aligned} {\mathcal {G}}&= {\left[ {1 - {e^{ - \left( {{A_R}y + {B_R}} \right) }}\sum \limits _{j = 0}^{{m_{RD2}} - 1} {\frac{{{{\left( {{A_R}y + {B_R}} \right) }^j}}}{{j!}}} } \right] ^{\left| {{\mathcal {S}}_i^\ell } \right| }} \\&= \sum \limits _{a = 0}^{\left| {{\mathcal {S}}_i^\ell } \right| } {\left( {\begin{array}{l} {\left| {{\mathcal {S}}_i^\ell } \right| } \\ a \\ \end{array}} \right) } {\left( { - 1} \right) ^a}{\left( {{e^{ - \left( {{A_R}y + {B_R}} \right) }}\sum \limits _{j = 0}^{{m_{RD2}} - 1} {\frac{{{{\left( {{A_R}y + {B_R}} \right) }^j}}}{{j!}}} } \right) ^a} \end{aligned} \end{aligned}$$
(36)

Applying the multinomial theorem to expand the \({\left( {\sum \nolimits _{j = 0}^{{m_{RD2}} - 1} {\frac{{{{\left( {{A_R}y + {B_R}} \right) }^j}}}{{j!}}} } \right) ^a}\) term in the above, one obtains

$$\begin{aligned} \begin{aligned} {\mathcal {G}}&= \sum \limits _{a = 0}^{\left| {{\mathcal {S}}_i^\ell } \right| } {\left( {\begin{array}{l} {\left| {{\mathcal {S}}_i^\ell } \right| } \\ a \\ \end{array}} \right) a!{{\left( { - 1} \right) }^a}{e^{ - a\left( {{A_R}y + {B_R}} \right) }} } \\&\qquad \times \sum \limits _{{w_0} + {w_1} +\cdots + {w_{{m_{RD2}} - 1}} = a} {\prod \limits _{j = 0}^{{m_{RD2}} - 1} {\left\{ {\frac{1}{{{w_j}!}}{{\left[ {\frac{{{{\left( {{A_R}y + {B_R}} \right) }^j}}}{{j!}}} \right] }^{{w_j}}}} \right\} } } \\&= \sum \limits _{a = 0}^{\left| {{\mathcal {S}}_i^\ell } \right| } {\left( {\begin{array}{l} {\left| {{\mathcal {S}}_i^\ell } \right| } \\ a \\ \end{array}} \right) a!{{\left( { - 1} \right) }^a}{e^{ - a\left( {{A_R}y + {B_R}} \right) }} } \\&\qquad \times \sum \limits _{{w_0} + {w_1} +\cdots + {w_{{m_{RD2}} - 1}} = a} {\left\{ {{{\left( {{A_R}y + {B_R}} \right) }^H}\prod \limits _{j = 0}^{{m_{RD2}} - 1} {\frac{1}{{{w_j}!{{\left( {j!} \right) }^{{w_j}}}}}} } \right\} } \\&= \sum \limits _{a = 0}^{\left| {{\mathcal {S}}_i^\ell } \right| } {\left( {\begin{array}{l} {\left| {{\mathcal {S}}_i^\ell } \right| } \\ a \\ \end{array}} \right) a!{{\left( { - 1} \right) }^a}{e^{ - a\left( {{A_R}y + {B_R}} \right) }} } \\&\qquad \times \sum \limits _{{w_0} + {w_1} +\cdots + {w_{{m_{RD2}} - 1}} = a} {\left\{ {\left[ {\prod \limits _{j = 0}^{{m_{RD2}} - 1} {\frac{1}{{{w_j}!{{\left( {j!} \right) }^{{w_j}}}}}} } \right] \sum \limits _{b = 0}^H {\left( {\begin{array}{l} H \\ b \\ \end{array}} \right) A_R^bB_R^{H - b}{y^b}} } \right\} }, \end{aligned} \end{aligned}$$
(37)

where H is defined in (25).

Inserting (32) and (37) into (31), one obtains the compact representation of \({\mathcal {L}}\) as

$$\begin{aligned} \begin{aligned} {\mathcal {L}}&= \sum \limits _{a = 0}^{\left| {{\mathcal {S}}_i^\ell } \right| } {\left( {\begin{array}{l} {\left| {{\mathcal {S}}_i^\ell } \right| } \\ a \\ \end{array}} \right) \frac{{a!{{\left( { - 1} \right) }^a}}}{{{e^{a{B_R}}}}} } \\&\qquad \times \sum \limits _{{w_0} + {w_1} +\cdots + {w_{{m_{RD2}} - 1}} = a} {\left[ {\prod \limits _{j = 0}^{{m_{RD2}} - 1} {\frac{1}{{{w_j}!{{\left( {j!} \right) }^{{w_j}}}}}} } \right] \sum \limits _{b = 0}^H {\left( {\begin{array}{l} H \\ b \\ \end{array}} \right) A_R^bB_R^{H - b}{\mathcal {J}}} }, \end{aligned} \end{aligned}$$
(38)

where

$$\begin{aligned} \begin{aligned} {\mathcal {J}}&= \int \limits _0^\infty {{e^{ - a{A_R}y}}{y^b}{f_Y}\left( y \right) dy} \\&= \int \limits _0^\infty {{e^{ - a{A_R}y}}{y^b}\frac{{\Lambda _{LD2}^{{m_{LD2}}}}}{{\Gamma \left( {{m_{LD2}}} \right) }}{y^{{m_{LD2}} - 1}}{e^{ - {\Lambda _{LD2}}y}}dy} \\&= \frac{{\Lambda _{LD2}^{{m_{LD2}}}}}{{\Gamma \left( {{m_{LD2}}} \right) }}\int \limits _0^\infty {{y^{{m_{LD2}} + b - 1}}{e^{ - \left( {a{A_R} + {\Lambda _{LD2}}} \right) y}}dy} \\&= \frac{{\Lambda _{LD2}^{{m_{LD2}}}\Gamma \left( {{m_{LD2}} + b} \right) }}{{{{\left( {a{A_R} + {\Lambda _{LD2}}} \right) }^{{m_{LD2}} + b}}\Gamma \left( {{m_{LD2}}} \right) }}. \end{aligned} \end{aligned}$$
(39)

Substituting (39) into (38), \({\mathcal {L}}\) is represented as (24), completing the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho-Van, K. On the Outage Performance of Reactive Relay Selection in Cooperative Cognitive Networks Over Nakagami-m Fading Channels. Wireless Pers Commun 96, 1007–1027 (2017). https://doi.org/10.1007/s11277-017-4217-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4217-0

Keywords

Navigation