Skip to main content

Advertisement

Log in

Design of Bio-inspired Heuristic Techniques Hybridized with Sequential Quadratic Programming for Joint Parameters Estimation of Electromagnetic Plane Waves

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this study, intelligent hybrid computing techniques are developed using variants of genetic algorithms (GAs) to estimate jointly direction of arrival and amplitude of electromagnetic plane waves. Fitness evaluation function is formulated for parameter estimation model by exploiting the approximation theory in mean square sense based on error between the desired and estimated responses. Optimization of design variables of the model is carried out with hybrid schemes through variant of GAs integrated with sequential quadratic programming for rapid refinement. Proposed schemes are applied to number of electromagnetic plane waves impinging on uniform linear array from different directions with different amplitudes. Comparison of the results is done with true parameters of the system in order to evaluate the performance of the algorithms. Monte-Carlo simulations for the design approaches are carried out to analyze their strength in terms of estimation accuracy, robustness against noise, convergence and proximity effects.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tuncer, E., & Friedlander, B. (2009). Classical and modern direction of arrival estimation. Burlington, MA: Elsevier Inc.

    Google Scholar 

  2. Meng, C.-L., Chen, S.-W., & Chang, A.-C. (2015). Direction-of-arrival estimation based on particle swarm optimization searching approaches for CDMA signals. Wireless Personal Communications, 81(1), 343–357.

    Article  Google Scholar 

  3. Cao, R., Wang, C., & Zhang, X. (2015). Two-dimensional direction of arrival estimation using generalized ESPRIT algorithm with non-uniform L-shaped array. Wireless Personal Communications, 84(1), 321–339.

    Article  Google Scholar 

  4. Chen, Z., Gokeda, G. K., & Yu, Y. (2010). Introduction to direction-of-arrival estimation. Norwood: Artech House.

    Google Scholar 

  5. Bartlett, M. S. (1948). Smoothing periodograms from time series with continuous spectra. Nature, 161, 686–687.

    Article  Google Scholar 

  6. Capon, J. (1969). High resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57, 1408–1418.

    Article  Google Scholar 

  7. Lacoss, R. T. (1971). Data adaptive spectral analysis methods. Geophysics, 36, 661–675.

    Article  Google Scholar 

  8. Stoica, P. (1990). Maximum likelihood method for direction of arrival estimation. IEEE Transactions on ASSP, 38(7), 1132–1143.

    Article  MATH  Google Scholar 

  9. Miller, M. L. (1990). Maximum likelihood narrow-band direction finding and EM algorithms. IEEE Transactions on ASSP, 36(10), P1560–P1577.

    Article  Google Scholar 

  10. Godara, L. C. (1997). Application of antenna arrays to mobile communications. Part II: Beamforming and direction of arrival considerations. Proceedings of the IEEE, 85(8), 1195–1245.

    Article  Google Scholar 

  11. Ariela, Z., & Friedlander, B. (1996). Direction of arrival estimation using parametric signal models. IEEE Transacations on Signal Processing, 44(2), 339–350.

    Article  Google Scholar 

  12. Richard, F. (1990). Analysis of min-norm and MUSIC with arbitrary array geometry. IEEE Transactions on AES, 26(6), 976–985.

    Google Scholar 

  13. Haardt, M., & Ali-Hackl, M. E. (1994). Unitary ESPRIT: How to exploit additional information inherent in the rotational invariance structure. In Proceedings of ICASSP, Adelaide, Australia (Vol. IV, pp. 229–232).

  14. Krim, H., & Proakis, J. G. (1994). Smoothed eigenspace-based parameter estimation. Automatica, 30(1), 27–38.

    Article  MathSciNet  MATH  Google Scholar 

  15. Hua, Y., & Sarkar, T. K. (1990). Matrix pencil method for estimating parameters of exponentially damped–undamped sinusoids in noise. IEEE Transactions on Acoustics, Speech and Signal Processing, 38(5), 814–824.

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, M., & Lu, Y. (2007). A refined genetic algorithm for accurate and reliable DOA estimation with a sensor array. Wireless Personal Communications, 43(2), 533–547.

    Article  Google Scholar 

  17. Boccato, L., Krummenauer, R., Attux, R., & Lopes, A. (2012). Application of natural computing algorithms to maximum likelihood estimation of direction of arrival. Signal Processing, 92(5), 1338–1352.

    Article  Google Scholar 

  18. Boccato, L., Krummenauer, R., Attux, R., & Lopes, A. (2013). Improving the efficiency of natural computing algorithms in DOA estimation using a noise filtering approach. Circuits, Systems, and Signal Processing, 32(4), 1991–2001.

    Article  Google Scholar 

  19. Zhang, Z., Lin, J., & Shi, Y. (2013). Application of artificial bee colony algorithm to maximum likelihood DOA estimation. Journal of Bionic Engineering, 10(1), 100–109.

    Article  Google Scholar 

  20. Khan, J. A., Raja, M. A. Z., Rashidi, M. M., Syam, M. I., & Wazwaz, A. M. (2015). Nature-inspired computing approach for solving non-linear singular Emden–Fowler problem arising in electromagnetic theory. Connection Sciences, 27(4), 377–396. doi:10.1080/09540091.2015.1092499.

    Article  Google Scholar 

  21. Raja, M. A. Z. (2014). Solution of the one-dimensional Bratu equation arising in the fuel ignition model using ANN optimised with PSO and SQP. Connection Science, 26(3), 195–214. doi:10.1080/09540091.2014.907555.

    Article  Google Scholar 

  22. Raja, M. A. Z., & Samar, R. (2014). Numerical treatment for nonlinear MHD Jeffery–Hamel problem using neural networks optimized with interior point algorithm. Neurocomputing, 124, 178–193. doi:10.1016/j.neucom.2013.07.013.

    Article  Google Scholar 

  23. Xia, H., Chen, H., Yang, Z., Lin, F., & Wang, B. (2015). Optimal energy management, location and size for stationary energy storage system in a metro line based on genetic algorithm. Energies, 8(10), 11618–11640.

    Article  Google Scholar 

  24. Raja, M. A. Z., Farooq, U., Chaudhary, N. I., & Wazwaz, A. M. (2015). Stochastic numerical solver for nanofluidic problems containing multi-walled carbon nanotubes. Applied Soft Computing. doi:10.1016/j.asoc.2015.10.015. (in press).

    Google Scholar 

  25. Raja, M. A. Z., Manzar, M. A., & Samar, R. (2015). An efficient computational intelligence approach for solving fractional order Riccati equations using ANN and SQP. Applied Mathematical Modeling, 39, 3075–3093. doi:10.1016/j.apm.2014.11.024.

    Article  MathSciNet  Google Scholar 

  26. Balanis, C. A. (2005). Antenna theory: Analysis and design (Vol. 1). Hoboken: Wiley.

    Google Scholar 

  27. Zaman, F. (2014). Estimation of direction of arrival for adaptive beamforming. PhD dissertation, International Islamic University, Islamabad.

  28. Holland, J. H. (1973). Genetic algorithms and the optimal allocation of trials. SIAM Journal on Computing, 2(2), 88–105.

    Article  MathSciNet  MATH  Google Scholar 

  29. Zaman, F., Qureshi, I. M., Rehman, A. U., & Tanoli, S. A. K. (2015). Multiple target localization with bistatic radar using heuristic computational intelligence techniques. International Journal of Antennas and Propagation, 2015, 982967. doi:10.1155/2015/982967.

    Article  Google Scholar 

  30. Elahi, A., Qureshi, I. M., Khan, Z. U., & Zaman, F. (2015). Sidelobe reduction in non-contiguous OFDM-based cognitive radio systems using a generalized sidelobe canceller. Applied Sciences, 5(4), 894–909.

    Article  Google Scholar 

  31. Riaz, F., Shafi, I., Jabbar, S. et al. (2017). A novel white space optimization scheme using memory enabled genetic algorithm in cognitive vehicular communication. Wireless Personal Communications, 93(2), 287–309. doi:10.1007/s11277-015-3117-4.

    Article  Google Scholar 

  32. Ali, S., & Kim, D. H. (2015). Optimized power control methodology using genetic algorithm. Wireless Personal Communications, 83(1), 493–505.

    Article  Google Scholar 

  33. Salem, A. A., et al. (2015). Profit of price with supermodular game for spectrum sharing in cognitive radio using genetic algorithm. Wireless Personal Communications, 82(4), 2601–2609.

    Article  Google Scholar 

  34. Boggs, P. T., & Tolle, J. W. (1995). Sequential quadratic programming. Acta Numerica, 4, 1–51.

    Article  MathSciNet  MATH  Google Scholar 

  35. Raja, M. A. Z., Khan, J. A., Shah, S. M., Bhahoal, D., & Samar, R. (2015). Comparison of three unsupervised neural network models for first Painlevé Transcendent. Neural Computing and Applications, 26(5), 1055–1071. doi:10.1007/s00521-014-1774-y.

    Article  Google Scholar 

  36. Raja, M. A. Z., Khan, J. A., & Haroon, T. (2015). Stochastic numerical treatment for thin film flow of third grade fluid using unsupervised neural networks. Journal of the Taiwan Institute of Chemical Engineers, 48, 26–39. doi:10.1016/j.jtice.2014.10.018.

    Article  Google Scholar 

  37. Raja, M. A. Z., Khan, J. A., Behloul, D., Haroon, T., Siddiqui, A. M., & Samar, R. (2015). Exactly satisfying initial conditions neural network models for numerical treatment of first Painlevé equation. Applied Soft Computing, 26, 244–256. doi:10.1016/j.asoc.2014.10.009.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Zahoor Raja.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11277_2017_4251_MOESM1_ESM.docx

Appendix: Detailed results for all twelve variants of GA and GASQP in case of all three scenarios of the problem for each noise variances are presented in Appendix A, B and C of “Appendix.docx” file, which is available as an online supplementary material on the web site of the journal (DOCX 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbar, S., Raja, M.A.Z., Zaman, F. et al. Design of Bio-inspired Heuristic Techniques Hybridized with Sequential Quadratic Programming for Joint Parameters Estimation of Electromagnetic Plane Waves. Wireless Pers Commun 96, 1475–1494 (2017). https://doi.org/10.1007/s11277-017-4251-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4251-y

Keywords

Navigation