Skip to main content
Log in

Optimizing Spectrum Sharing in Wireless Mesh Network Using Cognitive Technology

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In cognitive wireless networks, spectrum owners (primary users, PUs) may lease the unused spectrum to unlicensed users (secondary users, SUs). This spectrum is used to establish a secondary network that serves real time connections. The size of leased spectrum influences both the admitted traffic of SUs and the cost of spectrum. For this spectrum market, we present unsupervised learning paradigm as a means for extracting the optimal control policy for spectrum trading. This policy gives spectrum owner the opportunity to maximize its profit by adapting network resources to the changes in the network status and the market conditions. To meet different requirements, the problem is formulated as reward maximization with penalty for delay. The numerical results show that the proposed machine learning method is able to find an efficient trade-off between profit loss, and average delay for SUs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Alsarhan, A., & Agarwal, A. (2011). Profit optimization in multi-service cognitive mesh network using machine learning,’ EURASIP. Journal of Wireless Communication and Networking, 36, 1–14.

    Google Scholar 

  2. Alsarhan, A., & Agarwal, A. (2012). Optimizing spectrum trading in cognitive mesh network using machine learning. Journal of Electrical and Computer Engineering, 2012(1), 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  3. Alsarhan, A., Al-Khasawneh, A., Itradat, A., & Bsoul, M. (2013). Economic model for routing and spectrum management in cognitive wireless mesh network. International Journal of Networking and Virtual Organisations, 12(4), 331–351.

    Article  Google Scholar 

  4. Alsarhan, A., Agarwal, A., Obeidat, I., Bsoul, M., Al-Khasawneh, A., & Kilani, Y. (2013). Optimal spectrum utilisation in cognitive network using combined spectrum sharing approach: overlay, underlay and trading. International Journal of Business Information Systems, 12(4), 423–454.

    Article  Google Scholar 

  5. Alsarhan, A., Quttoum, A., & Bsoul, M. (2015). Dynamic auction for revenue maximization in spectrum market. Wireless Personal Communications, 83(2), 1405–1423.

    Article  Google Scholar 

  6. Bajaj, I., Lee, Y. H., & Gong, Y. (2015). A spectrum trading scheme for licensed user incentives. IEEE Transactions on Communications, 63(11), 4026–4036.

    Article  Google Scholar 

  7. Bao, S., & Fujii, T. (2013). Learning-based p-persistent CSMA for secondary users of cognitive radio networks. International Journal of Space-Based and Situated Computing, 3(2), 102–112.

    Article  Google Scholar 

  8. Barto, S. (1998). Reinforcement learning: An introduction. Cambridge: The MIT Press.

    Google Scholar 

  9. Bertsekas, D., & Tsitsiklis, J. (1997). Neuro-dynamic programming. Nashua: Athena Scientific.

    MATH  Google Scholar 

  10. Brik, V., Rozner, E. & Banerjee, S. (2005) DSAP: A protocol for coordinated spectrum access. In Proceeding of IEEE symposium on new frontiers dynamic spectrum access networks (Dyspan 2005), Maryland, USA, pp. 611–614.

  11. Buddhikot, M. M., Kolody, P., Miller, S., Ryan, K. & Evans, J. (2005) DIMSUMNet: new directions in wireless networking using coordinated dynamic spectrum access. In Proceedings of IEEE international symposium on world of wireless mobile and multimedia networks (WoWMoM 2005), Taormina, Italy, pp. 78–85.

  12. Chieochan, S., & Hossain, E. (2013). Channel assignment for throughput optimization in multi-channel multi-radio wireless mesh networks using network coding. IEEE Transactions on Mobile Computing, 1(1), 118–135.

    Article  Google Scholar 

  13. Cicconetti, C., Akyildiz, I. F., & Lenzini, L. (2009). FEBA: A bandwidth allocation algorithm for service differentiation in IEEE 802.16 mesh networks. IEEE Transactions on Networking, 17(3), 884–897.

    Article  Google Scholar 

  14. Feng, X., Lin, P., & Zhang, Q. (2015). FlexAuc: Serving dynamic demands in a spectrum trading market with flexible auction. IEEE Transactions on Wireless Communications, 14(2), 821–830.

    Article  Google Scholar 

  15. Foukalas, F., Karetsos, G., & Merakos, L. (2012). Cross-layer design in opportunistic spectrum access-based cognitive radio networks. International Journal of Communication Networks and Distributed Systems, 8(3/4), 230–246.

    Article  MATH  Google Scholar 

  16. Gallego, G., & Ryzin, G. V. (1994). Optimal dynamic pricing of inventories with stochastic demand over finite horizons. Management Science, 40, 999–1020.

    Article  MATH  Google Scholar 

  17. Gross, D., Shortle, J., Thompson, J., & Harris, C. (2008). Fundamentals of queueing theory. New York: Willey.

    Book  MATH  Google Scholar 

  18. Haddadi, S., & Ghasemi, A. (2016). Pricing-based Stackelberg game for spectrum trading in self-organised heterogeneous networks. IET Communications, 10(11), 1374–1383.

    Article  Google Scholar 

  19. He, J., Zhang, Y., Kaleshi, D., Munro, A., & McGeehan, J. (2008). Dynamic spectrum access in heterogeneous unlicensed wireless networks. International Journal of Autonomous and Adaptive Communications Systems, 1(1), 148–163.

    Article  Google Scholar 

  20. Hossain, E., & Bhargava, V. K. (1997). Cognitive wireless communication networks. Berlin: Springer.

    Google Scholar 

  21. Hossain, E., Niyato, D., & Han, Z. (2009). Dynamic spectrum access and management in cognitive radio networks. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  22. How, K., Ma, M., & Qin, Y. (2012). Differentiated service provisioning in the MAC layer of cognitive radio mesh networks. International Journal of Communication Networks and Distributed Systems, 8(3/4), 213–229.

    Article  Google Scholar 

  23. Huang, J., Berry, R., & Honig, M. L. (2006). Auction-based spectrum sharing. ACM Mobile Networks and Applications, 11(3), 405–418.

    Article  Google Scholar 

  24. Ishibashi, B., Bouabdallah, N., & Boutaba, R. QoS (2008) Performance analysis of cognitive radio-based virtual wireless networks. In Proceeding IEEE computer and communications (Infocom 2008), Phoenix, USA, pp. 336–340.

  25. Jia, J., Zhang, Q., Zhang, Q., & Liu, M. (2009) Revenue generation for truthful spectrum auction in dynamic spectrum access. In Proceeding of ACM international symposium on mobile Ad Hoc networking and computing (MobiHoc 2009), New Orleans, USA, pp. 3–12.

  26. Kasbekar, G. S., & Sarkar, S. (2016). Spectrum white space trade in cognitive radio networks. IEEE Transactions on Automatic Control, 61(3), 585–600.

    Article  MathSciNet  MATH  Google Scholar 

  27. Kloeck, C., Jaekel, H., & Jondral, F. K. (2005) Dynamic and local combined pricing, allocation and billing system with cognitive radios. In Proceeding of IEEE symposium on new frontiers dynamic spectrum access networks (Dyspan 2005), Maryland, USA, pp. 73–81.

  28. Kordali, A. V., & Cottis, P. G. (2016). A reinforcement-learning based cognitive scheme for opportunistic spectrum access. Wireless Personal Communications: An International Journal, 86(2), 751–769.

    Article  Google Scholar 

  29. Mitchell, T. (1997). Machine learning networks. New York: McGraw-Hill.

    MATH  Google Scholar 

  30. Mutlu, H., Alanyali, M., & Starobinski, D. (2008) Spot pricing of secondary spectrum usage in wireless cellular networks. In Proceeding of IEEE Computer and Communications (Infocom 2008), Phoenix, USA, pp. 1355–1363.

  31. Niyato, D., & Hossain, E. (2008). Spectrum trading in cognitive radio networks: A market-equilibrium-based approach. IEEE Wireless Communications, 15(6), 71–80.

    Article  Google Scholar 

  32. Niyato, D., Hossain, E., & Han, Z. (2009). Dynamics of multiple-seller and multiple-buyer spectrum trading in cognitive radio networks: A game-theoretic modeling approach. IEEE Transaction on Mobile Computing, 8(8), 1009–1022.

    Article  Google Scholar 

  33. Pan, M., Li, P., Song, Y., Fang Y., & Lin, P. (2012). Spectrum clouds: A session based spectrum trading system for multi-hop cognitive radio networks. In Proceeding of IEEE computer and communications (Infocom 2012), Orlando, USA, pp. 1557–1565.

  34. Song, L., & Hatzinakos, D. (2009). Cognitive networking of large scale wireless systems. International Journal of Communication Networks and Distributed Systems, 2(4), 452–475.

    Article  Google Scholar 

  35. Thiagarajan, M., & Srinivasan, A. (2011). M/M/c/K loss and delay interdependent queueing model with controllable arrival rates and no passing. The Indian Journal of Statistics, 73(2), 316–330.

    MathSciNet  MATH  Google Scholar 

  36. Tijims, H. (1986). Stochastic modeling and analysis: A computational approach. New York: Willey.

    Google Scholar 

  37. Wang, F., & Cui, M. (2008) Spectrum sharing in cognitive radio networks. In Proceeding of IEEE Computer and Communications (Infocom 2008), Phoenix, USA, pp. 1885–1893.

  38. Wang, B., Ji, Z., & Liu, K. (2007) Primary-prioritized markov approach for dynamic spectrum access. In Proceeding of IEEE symposium on new frontiers dynamic spectrum access networks (Dyspan 2007), Dublin, Ireland, pp. 507–515.

  39. Wang, X., Li, Z., Xu, P., Xu, Y., Gao, X., & Chen, H. (2010). Spectrum sharing in cognitive radio networks—an auction-based approach. IEEE Transactions on Systems, Man, and Cybernetics. Part B, Cybernetics, 40(3), 587–596.

    Article  Google Scholar 

  40. Wang, J., Ding, W., Guo, Y., Zhang, C., Pan, M., & Song, J. (2016). M3-STEP: Matching-based multi-radio multi-channel spectrum trading with evolving preferences. IEEE Journal on Selected Areas in Communications, 34(11), 3014–3024.

    Article  Google Scholar 

  41. Yu, H., Gao, L., Wang, Z., & Hossain, E. (2010). Pricing for uplink power control in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(4), 1769–1778.

    Article  Google Scholar 

  42. Zhang, L., & Zheng, G. (2010). Adaptive QoS-aware channel access scheme for cognitive radio networks. International Journal of Ad Hoc and Ubiquitous Computing, 6(3), 172–182.

    Article  Google Scholar 

  43. Zheng, H., & Cao, L. (2005) Device-centric spectrum management. In Proceeding of IEEE symposium on new frontiers dynamic spectrum access networks (Dyspan 2005), Maryland, USA, pp. 56–65.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayoub Alsarhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsarhan, A., Quttoum, A.N. & Kilani, Y. Optimizing Spectrum Sharing in Wireless Mesh Network Using Cognitive Technology. Wireless Pers Commun 96, 1887–1905 (2017). https://doi.org/10.1007/s11277-017-4274-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4274-4

Keywords

Navigation