Skip to main content
Log in

Domain Decomposition Based PIC Detectors for Massive MIMO

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, we investigate the use of domain decomposition techniques in developing novel block-wise PIC detectors for communication systems. Specifically, we consider the cancellation of inter-antenna-interference in the uplink of massive MIMO systems and develop a new block-wise PIC detector based on additive Schwarz method. Up to our knowledge, this is the first time domain decomposition techniques are applied within the wireless communication field. Careful inspection of the channel cross-correlation matrix reveals the fact that the latter has a special structure which supports the use of block iterative methods. We exploit this fact and develop a block-wise PIC detector that is suitable for implementation on parallel processors. Convergence analysis and the impact of various parameters such as the level of overlap and the number of blocks on the convergence behavior of the novel PIC detector are considered. Simulation results show important improvement in convergence speed compared to the conventional linear PIC detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution towards 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communications, 21(3), 18–127.

    Article  Google Scholar 

  2. Honig, M. L. (2009). Advances in multiuser detection. In Wiley Series in telecommunications and signal processing. Wiley.

  3. Yang, S., & Hanzo, L. (2015). Fifty years of MIMO detection: The road to large-scale MIMOs. IEEE Communications Surveys and Tutorials, 17(4), 1941–1988.

    Article  Google Scholar 

  4. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  5. Bentrcia, A., & Zerguine, A. (2009). A new linear group-wise parallel interference cancellation detector. Wireless Personal Communications, 49(1), 23–34.

    Article  Google Scholar 

  6. Pllana, S., & Xhafa, F. (2017). Programming multi-core and many-core computing systems. Hoboken: Wiley.

    Book  Google Scholar 

  7. Okrouhlík, M. (2008). Numerical methods in computational mechanics. Technical report, Institute of Thermomechanics, Prague.

  8. Gander, M. J. (2008). Schwarz methods over the course of time. Electronic Transactions on Numerical Analysis, 31, 228–255.

    MathSciNet  MATH  Google Scholar 

  9. Griebel, M., & Oswald, P. (1995). On the abstract theory of additive and multiplicative Schwarz algorithms. Numerische Mathematik, 70(2), 163–180.

    Article  MathSciNet  MATH  Google Scholar 

  10. Nabben, R. (2003). Comparisons between multiplicative and additive Schwarz iterations in domain decomposition methods. Numerische Mathematik, 95(1), 145–162.

    Article  MathSciNet  MATH  Google Scholar 

  11. Bai, Z. Z. (2003). On the convergence of additive and multiplicative splitting iterations for systems of linear equations. Journal of Computational and Applied Mathematics, 154(1), 195–214.

    Article  MathSciNet  MATH  Google Scholar 

  12. Holst, M. (1994). An algebraic Schwarz theory. Technical report CRPC-94-12, Applied mathematics and CRPC, California Institute of Technology.

  13. van Zelst, A & Hammerschmidt, J. S. (2002). A single coefficient spatial correlation model for multiple-input multiple-output (MIMO) radio channels. In Proceedings of URSI XXVIIth general assembly (pp. 1–4). Maastricht, The Netherlands.

  14. Saad, Y. (2003). Iterative methods for sparse linear systems. Philadelphia: SIAM.

    Book  MATH  Google Scholar 

  15. Smith, B. (2004). Domain decomposition: Parallel multilevel methods for elliptic partial differential equations. Cambridge: Cambridge University Press.

    Google Scholar 

  16. Yanai, H., Takeuchi, K., & Takane, Y. (2011). Projection matrices generalized inverse matrices and singular value decomposition. New York: Springer.

    Book  MATH  Google Scholar 

  17. Yu, T., Xiao, Z. & Wong, M. D. (2012). Efficient parallel power grid analysis via additive Schwarz method. ICCAD (pp. 399–406).

  18. Cai, X.-C., & Sarkis, M. (1999). A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM Journal of Scientific Computing, 21, 792–797.

    Article  MathSciNet  MATH  Google Scholar 

  19. Loisel, S., Nabben, R., & Szyld, D. B. (2008). On hybrid multigrid-Schwarz algorithms. Journal of Scientific Computing, 36(2), 165–175.

    Article  MathSciNet  MATH  Google Scholar 

  20. Frommer, A., Nabben, R., & Szyld, D. B. (2008). Convergence of stationary iterative methods for hermitian semidefinite linear systems and applications to Schwarz methods. SIAM Journal on Matrix Analysis and Applications, 30(2), 925–938.

    Article  MathSciNet  MATH  Google Scholar 

  21. Frommer, A., Nabben, R. & Szyld, D. B. (2001). An algebraic convergence theory for restricted additive and multiplicative Schwarz methods. In Proceedings of the 13th international conference on domain decomposition methods in Lyon, France, (pp. 369–375).

  22. Nabben, R., & Szyld, D. B. (2006). Schwarz iterations for symmetric positive semidefinite problems. SIAM Journal on Matrix Analysis and Applications, 29(1), 98–116.

    Article  MathSciNet  MATH  Google Scholar 

  23. Quarteroni, A., Sacco, R., & Saleri, F. (2000). Numerical mathematics. New York: Springer.

    MATH  Google Scholar 

Download references

Acknowledgements

The author acknowledges the support of King Saud University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelouahab Bentrcia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bentrcia, A. Domain Decomposition Based PIC Detectors for Massive MIMO. Wireless Pers Commun 96, 2141–2160 (2017). https://doi.org/10.1007/s11277-017-4290-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4290-4

Keywords

Navigation