Skip to main content
Log in

Gain Enhancement of Microstrip Patch Antenna Loaded with Split Ring Resonator Based Relative Permeability Near Zero as Superstrate

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this presented work, Split Ring Resonator (SRR) is arranged in 7X7X4 form to create a metamaterial superstrate which is incorporate on patch antenna. The SRR based metamaterial slab is analysed with Nicolson–Ross–Wier approach to extract the effective parameters of the medium. The Extracted parameters Shows that the relative permeability of the slab is near zero in the vicinity of the resonant frequency of the designed antenna. The experimental results clearly reflect that the gain of the superstrate loaded patch improves by 7.6 dB with variation less than 1 dB in the vicinity of resonant frequency. Structures are simulated on Ansoft HFSS v14 and experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Balanis, C. A. (2016). Antenna theory analysis and design (3rd ed.). New York: Wiley.

    Google Scholar 

  2. Ziolkowski, R. W., & Kipple, A. (2003). Application of double negative metamaterials to increase the power radiated by electrically small antennas. IEEE Transactions on Antennas and Propagation, 51(10), 2626–2640.

    Article  Google Scholar 

  3. Hao, Y., & Mittra, R. (2009). FDTD modeling of metamaterials: Theory and applications. Norwood: Artech House.

    MATH  Google Scholar 

  4. Engheta, N., & Ziolkowski, R. W. (2006). Metamaterials: Physics and engineering explorations. Hoboken: Wiley-IEEE Press.

    Book  Google Scholar 

  5. Mendhe, S. E., & Kosta, Y. P. (2011). Metamaterial properties and applications. International Journal of Information Technology and Knowledge Management, 4(1), 85–89.

    Google Scholar 

  6. Jackson, D. R., & Alexopoulos, N. G. (1985). Gain enhancement methods for printed circuit antennas. IEEE Transactions on Antennas and Propagation, 33(9), 976–987.

    Article  Google Scholar 

  7. Chung, K. L., & Mohan, A. S. (2004). Effect of superstrate thickness on the performance of broadband circularly polarised stacked patch antenna. IEEE Antennas and Propagation Society International Symposium, 1, 687–690.

    Google Scholar 

  8. Lee, D. H., et al. (2007). Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement. IET Microwaves, Antennas and Propagation, 1, 248–254.

    Article  Google Scholar 

  9. Euler, M., & Fusco, V. F. (2010). RCS control using cascaded circularly polarized frequency selective surfaces and an AMC structure as a switchable twist polarizer. Microwave and Optical Technology Letters, 52, 577–580.

    Article  Google Scholar 

  10. Brito, D. B., et al. (2013). Metamaterial inspired Fabry–Pérot antenna with cascaded frequency selective surfaces. Microwave and Optical Technology Letters, 55, 981–985.

    Article  Google Scholar 

  11. Gangwar, D., Das, S., Yadava, R. L., & Kanaujia, B. K. (2016). Circularly polarized inverted stacked high gain antenna with frequency selective surface. Microwave and Optical Technology Letters, 58(3), 732–740.

    Article  Google Scholar 

  12. Attia, H., Yousefi, L., & Ramahi, O. M. (2010). Theoretical and experimental investigation of patch antennas loaded with engineered magnetic superstrates. In Wireless technology conference (EuWIT) (pp. 97–100).

  13. Attia, H., Yousefi, L., & Ramahi, O. M. (2011). Analytical model for calculating the radiation field of microstrip antennas with artificial magnetic superstrates: Theory and experiment. IEEE Transactions on Antennas and Propagation, 59(5), 1438–1445.

    Article  Google Scholar 

  14. Zhang, L., Contopanagos, H., Alexopoulos, N. G., & Yablonovitch, E. (1998). Cavity backed antennas with PBG-like substrate or superstrate materials. IEEE Antennas and Propagation Society International Symposium, 1, 186–189.

    Google Scholar 

  15. Zhang, L., Alexopoulos, N. G., & Yablonovitch, E. (1999). Microstrip line fed slot antenna with PBG superstrate. IEEE Antennas and Propagation Society International Symposium, 3, 1924–1927.

    Google Scholar 

  16. Attia, H., Siddiqui, O. F., Suwan, N., & Ramahi, O. M. (2013). Analytical and experimental study of gain enhancement in antenna arrays covered with high index metamaterial superstrate. Microwave and Optical Technology Letters, 55(1), 215–218.

    Article  Google Scholar 

  17. Ju, J., Kim, D., Lee, W. J., & Choi, J. I. (2009). Wideband high‐gain antenna using metamaterial superstrate with the zero refractive index. Microwave and Optical Technology Letters, 51(8), 1973–1976.

    Article  Google Scholar 

  18. Zhou, R., Zhang, H., & Xin, H. (2008). Experimental demonstration of narrow beam monopole antenna embedded in low effective index of refraction (n < 1) wire medium. Microwave and Optical Technology Letters, 50(9), 2341–2345.

    Article  Google Scholar 

  19. Davor, B., Silvio, H., & Drazen, K. (2006). Experimental investigation of radiation properties of an antenna embedded in low permittivity thin-wire-based metamaterial. Microwave and Optical Technology Letters, 48(12), 2581–2586.

    Article  Google Scholar 

  20. Zhou, R., Zhang, H., & Xin, H. (2010). Metallic wire array as low-effective index of refraction medium for directive antenna application. IEEE Transaction on Antennas and Propagation, 58(1), 79–87.

    Article  Google Scholar 

  21. Wang, B., & Huang, K. M. (2010). Shaping the radiation pattern with MU and epsilon-near-zero metamaterials. Progress In Electromagnetics Research, 106, 107–119.

    Article  Google Scholar 

  22. Gangwar, D., Juyal, P., Mittal, A., & De, A. (2011). Enhancement of front to back ratio and directivity with wire medium ε-Near zero metamaterial as superstrate in microstrip patch radiators. In Antenna Week (IAW) (pp. 1–4).

  23. Ziolkowski, R. W. (2003). Design, fabrication, and testing of double negative metamaterials. IEEE Transactions on Antennas and Propagation, 51(7), 1516–1529.

    Article  Google Scholar 

  24. Lee, D. H., & Park, W. S. (2009). Extraction of effective permittivity and permeability of periodic metamaterial cells. Microwave and Optical Technology Letters, 51(8), 1824–1830.

    Article  Google Scholar 

  25. Basiry, R., Abiri, H., & Yahaghi, A. (2011). Electromagnatic performance analysis of omega type metamaterial radomes. International Journal of RF and Microwave Computer Aided Engineering, 21(6), 665–672.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor A. R. Harish, IIT Kanpur, India, for his permission to access antenna lab for measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Gangwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, D., Das, S. & Yadava, R.L. Gain Enhancement of Microstrip Patch Antenna Loaded with Split Ring Resonator Based Relative Permeability Near Zero as Superstrate. Wireless Pers Commun 96, 2389–2399 (2017). https://doi.org/10.1007/s11277-017-4303-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4303-3

Keywords

Navigation