Skip to main content
Log in

Outage Probability of Multiuser Mixed RF/FSO Relay Schemes for Heterogeneous Cloud Radio Access Networks (H-CRANs)

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The increase in deployment of various advanced wireless technologies, services, and applications have put significant pressure on the mobile network operators (MNOs) in terms of system requirements such as capacity, quality of service (QoS), and network coverage. In an effort to optimally meet the system requirements, the MNOs are confronted with high total cost of ownership (TCO), however, the associated income is relatively low. In order to address the challenges, MNOs as well as service providers (SPs) have given considerable interest to the small-cell schemes along with the associated advanced centralized and heterogeneous network architectures. This is due to their beneficial qualities regarding system performance optimization and cost-effectiveness. However, achieving the stringent requirements of the fronthaul for connecting the network elements is highly demanding. In this paper, taking into consideration the small-cell network architectures, we present multiuser mixed radio-frequency/free-space optical (RF/FSO) relay schemes as viable means of alleviating the stringent requirements. Furthermore, we study the end-to-end outage performance of the mixed RF/FSO schemes considering the effect of pointing errors in the FSO links. The simulation results portray the feasibility of deployment of the mixed RF/FSO schemes in real-life scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ayyash, M., Elgala, H., Khreishah, A., Jungnickel, V., Little, T., Shao, S., et al. (2016). Coexistence of WiFi and LiFi toward 5G: Concepts, opportunities, and challenges. IEEE Communications Magazine, 54(2), 64–71. doi:10.1109/MCOM.2016.7402263.

    Article  Google Scholar 

  2. Wu, J., Zhang, Z., Hong, Y., & Wen, Y. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29(1), 35–41. doi:10.1109/MNET.2015.7018201.

    Article  Google Scholar 

  3. Dahrouj, H., Douik, A., Dhifallah, O., Al-Naffouri, T. Y., & Alouini, M. S. (2015). Resource allocation in heterogeneous cloud radio access networks: Advances and challenges. IEEE Wireless Communications, 22(3), 66–73. doi:10.1109/MWC.2015.7143328.

    Article  Google Scholar 

  4. Siddique, U., Tabassum, H., Hossain, E., & Kim, D. I. (2015). Wireless backhauling of 5G small cells: Challenges and solution approaches. IEEE Wireless Communications, 22(5), 22–31. doi:10.1109/MWC.2015.7306534.

    Article  Google Scholar 

  5. Monteiro, P. P., Viana, D., da Silva, J., Riscado, D., Drummond, M., Oliveira, A. S. R., Silva, N., & Jesus, P. (2015). Mobile fronthaul RoF transceivers for C-RAN applications. In 2015 17th International conference on transparent optical networks (ICTON), pp. 1–4. doi:10.1109/ICTON.2015.7193452.

  6. Peng, M., Li, Y., Zhao, Z., & Wang, C. (2015). System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network, 29(2), 6–14. doi:10.1109/MNET.2015.7064897.

    Article  Google Scholar 

  7. Liu, C., Zhang, L., Zhu, M., Wang, J., Cheng, L., & Chang, G. K. (2013). A novel multi-service small-cell cloud radio access network for mobile backhaul and computing based on radio-over-fiber technologies. Journal of Lightwave Technology, 31(17), 2869–2875. doi:10.1109/JLT.2013.2274193.

    Article  Google Scholar 

  8. Oliveira, R. S., Oliveira, R. S., Francês, C. R. L., Costa, J. C. W. A., Viana, D. F. R., Lima, M., & Teixeira, A. (2014). Analysis of the cost-effective digital radio over fiber system in the NG-PON2 context. In Telecommunications network strategy and planning symposium (nNetworks), 2014 16th international, pp. 1–6. doi:10.1109/NETWKS.2014.6959262.

  9. Chang, G.-K., Liu, C., & Zhang, L. (2013). Architecture and applications of a versatile small-cell, multi-service cloud radio access network using radio-over-fiber technologies. In 2013 IEEE international conference on communications workshops (ICC), pp. 879–883. doi:10.1109/ICCW.2013.6649358.

  10. Gomes, N. J., Assimakopoulos, P., Vieira, L. C., & Sklikas, P. (2014). Fiber link design considerations for cloud-radio access networks. In 2014 IEEE international conference on communications workshops (ICC), pp. 382–387. doi:10.1109/ICCW.2014.6881227.

  11. Liu, X., Zeng, H., Chand, N., & Effenberger, F. (2016). Efficient mobile fronthaul via DSP-based channel aggregation. Journal of Lightwave Technology, 34(6), 1556–1564. doi:10.1109/JLT.2015.2508451.

    Article  Google Scholar 

  12. Monteiro, P. P., & Gameiro, A. (2016). Convergence of optical and wireless technologies for 5G. In F. Hu (Ed.), Opportunities in 5G networks: a research and development perspective CRC Press, CRC Press, chap. 9, pp. 179–215.

  13. Alimi, I., Monteiro, P., & Teixeira, A. (2016). Analysis of atmospheric effects on RF signal transmission over the optical wireless communication links. In XIII symposium on enabling optical networks and sensors, pp. 35–38.

  14. Kazaura, K., Dat, P., Shah, A., Suzuki, T., Wakamori, K., Matsumoto, M., Higashino, T., Tsukamoto, K., & Komaki, S. (2008). Studies on a next generation access technology using radio over free-space optic links. In 2008 The second international conference on next generation mobile applications, services, and technologies, pp. 317–324. doi:10.1109/NGMAST.2008.54.

  15. Hung, S. C., Hsu, H., Lien, S. Y., & Chen, K. C. (2015). Architecture harmonization between cloud radio access networks and fog networks. IEEE Access, 3, 3019–3034. doi:10.1109/ACCESS.2015.2509638.

    Article  Google Scholar 

  16. Ran, C., Wang, S., & Wang, C. (2015). Balancing backhaul load in heterogeneous cloud radio access networks. IEEE Wireless Communications, 22(3), 42–48. doi:10.1109/MWC.2015.7143325.

    Article  Google Scholar 

  17. Dat, P. T., Kanno, A., & Kawanishi, T. (2015). Radio-on-radio-over-fiber: Efficient fronthauling for small cells and moving cells. IEEE Wireless Communications, 22(5), 67–75. doi:10.1109/MWC.2015.7306539.

    Article  Google Scholar 

  18. Rao, X., & Lau, V. K. N. (2015). Distributed fronthaul compression and joint signal recovery in cloud-RAN. IEEE Transactions on Signal Processing, 63(4), 1056–1065. doi:10.1109/TSP.2014.2386290.

    Article  MathSciNet  Google Scholar 

  19. Wang, N., Hossain, E., & Bhargava, V. K. (2015). Backhauling 5G small cells: A radio resource management perspective. IEEE Wireless Communications, 22(5), 41–49. doi:10.1109/MWC.2015.7306536.

    Article  Google Scholar 

  20. Peng, M., Zhang, K., Jiang, J., Wang, J., & Wang, W. (2015). Energy-efficient resource assignment and power allocation in heterogeneous cloud radio access networks. IEEE Transactions on Vehicular Technology, 64(11), 5275–5287. doi:10.1109/TVT.2014.2379922.

    Article  Google Scholar 

  21. Peng, M., Yan, S., Zhang, K., & Wang, C. (2016). Fog-computing-based radio access networks: Issues and challenges. IEEE Network, 30(4), 46–53. doi:10.1109/MNET.2016.7513863.

    Article  Google Scholar 

  22. Alimi, I., Shahpari, A., Ribeiro, V., Kumar, N., Monteiro, P., & Teixeira, A. (2016). Optical wireless communication for future broadband access networks. In 2016 21st European conference on networks and optical communications (NOC), pp. 124–128. doi:10.1109/NOC.2016.7506998.

  23. Sousa, A., Shahpari, A., Ribeiro, V., Lima, M., & Teixeira, A. (2015). Gigabit passive optical networks and CATV over hybrid bidirectional free space optics +20 km single mode fiber. Microwave and Optical Technology Letters, 57(12), 2867–2871. doi:10.1002/mop.29456.

    Article  Google Scholar 

  24. Naila, C. B., Wakamori, K., Matsumoto, M., Bekkali, A., & Tsukamoto, K. (2012). Transmission analysis of digital TV signals over a radio-on-FSO channel. IEEE Communications Magazine, 50(8), 137–144. doi:10.1109/MCOM.2012.6257540.

    Article  Google Scholar 

  25. Alimi, I., Shahpari, A., Ribeiro, V., Sousa, A., Monteiro, P., & Teixeira, A. (2017). Channel characterization and empirical model for ergodic capacity of free-space optical communication link. Optics Communications, 390, 123–129. doi:10.1016/j.optcom.2017.01.001, http://www.sciencedirect.com/science/article/pii/S0030401817300019.

  26. Yang, L., Hasna, M. O., & Gao, X. (2015). Performance of mixed RF/FSO with variable gain over generalized atmospheric turbulence channels. IEEE Journal on Selected Areas in Communications, 33(9), 1913–1924. doi:10.1109/JSAC.2015.2432471.

    Article  Google Scholar 

  27. Samimi, H., & Uysal, M. (2013). End-to-end performance of mixed RF/FSO transmission systems. IEEE/OSA Journal of Optical Communications and Networking, 5(11), 1139–1144. doi:10.1364/JOCN.5.001139.

    Article  Google Scholar 

  28. Dahrouj, H., Douik, A., Rayal, F., Al-Naffouri, T. Y., & Alouini, M. S. (2015). Cost-effective hybrid RF/FSO backhaul solution for next generation wireless systems. IEEE Wireless Communications, 22(5), 98–104. doi:10.1109/MWC.2015.7306543.

    Article  Google Scholar 

  29. Zhang, J., Dai, L., Zhang, Y., & Wang, Z. (2015). Unified performance analysis of mixed radio frequency/free-space optical dual-hop transmission systems. Journal of Lightwave Technology, 33(11), 2286–2293. doi:10.1109/JLT.2015.2409570.

    Article  Google Scholar 

  30. Zedini, E., Ansari, I. S., & Alouini, M. S. (2015). Performance analysis of mixed Nakagami-m and Gamma–Gamma dual-hop FSO transmission systems. IEEE Photonics Journal, 7(1), 1–20. doi:10.1109/JPHOT.2014.2381657.

    Article  Google Scholar 

  31. Shen, H., Wang, J., Xu, W., Rong, Y., & Zhao, C. (2014). A worst-case robust MMSE transceiver design for nonregenerative MIMO relaying. IEEE Transactions on Wireless Communications, 13(2), 695–709. doi:10.1109/TWC.2013.120413.130009.

    Article  Google Scholar 

  32. Lee, E., Park, J., Han, D., & Yoon, G. (2011). Performance analysis of the asymmetric dual-hop relay transmission with mixed RF/FSO links. IEEE Photonics Technology Letters, 23(21), 1642–1644. doi:10.1109/LPT.2011.2166063.

    Article  Google Scholar 

  33. Petkovic, M. I., Cvetkovic, A. M., Djordjevic, G. T., & Karagiannidis, G. K. (2015). Partial relay selection with outdated channel state estimation in mixed RF/FSO systems. Journal of Lightwave Technology, 33(13), 2860–2867. doi:10.1109/JLT.2015.2416972.

    Article  Google Scholar 

  34. Djordjevic, G. T., Petkovic, M. I., Cvetkovic, A. M., & Karagiannidis, G. K. (2015). Mixed RF/FSO relaying with outdated channel state information. IEEE Journal on Selected Areas in Communications, 33(9), 1935–1948. doi:10.1109/JSAC.2015.2433055.

    Article  Google Scholar 

  35. Farid, A. A., & Hranilovic, S. (2007). Outage capacity optimization for free-space optical links with pointing errors. Journal of Lightwave Technology, 25(7), 1702–1710. doi:10.1109/JLT.2007.899174.

    Article  Google Scholar 

  36. Jurado-Navas, A., Garrido-Balsells, J. M., Paris, J. F., & Castillo-Vázquez, M. (2012). Impact of pointing errors on the performance of generalized atmospheric optical channels. Optics Express, 20(11), 12550–12562. doi:10.1364/OE.20.012550.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Fundação para a Ciência e a Tecnologia (FCT) under the Ph.D. Grant PD/BD/52590/2014. It is also supported by the FCT/MEC through the national funds and when applicable co-funded by FEDER-PT2020 partnership agreement under the project UID/EEA/50008/2013. Also, it is funded by project compress: PTDC/EEITEL/ 7163/2014 and Project P2020 FutPON.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isiaka A. Alimi.

Additional information

Special Issue "Future Tele Infrastructure for Multi-sensory Devices (FIND)".

Guest editors: Professor Ramjee Prasad (ramjee@btech.au.dk) Professor Marina Ruggieri (ruggieri@uniroma2.it).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimi, I.A., Monteiro, P.P. & Teixeira, A.L. Outage Probability of Multiuser Mixed RF/FSO Relay Schemes for Heterogeneous Cloud Radio Access Networks (H-CRANs). Wireless Pers Commun 95, 27–41 (2017). https://doi.org/10.1007/s11277-017-4413-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4413-y

Keywords

Navigation