Skip to main content
Log in

A Novel Reliability and Traffic Aware Gateway Selection Scheme in Wireless Mesh Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The increase in the users’ demand has led to massive success of wireless technology during the last two decades. Wireless mesh networks are a booming technology which have developed and grabbed attention significantly. In this paper, the problem of Internet Gateway (IGW) selection is addressed with regard to network traffic and reliability of routes and a Reliability and Traffic aware Gateway Selection scheme is proposed. To the best of our knowledge, no work in the literature has considered the impact of reliability of routes on the selection of gateways in their scenarios. Given the number of mesh nodes in the network, some Internet Gateway Candidates are selected regarding the traffic in the network. Then, the best of these candidates are selected to be equipped with gateway functionality taking into consideration of the path-tracing method. Simulation results demonstrate how our novel mechanism outperforms two successful approaches in IGW selection in terms of throughput, delay and network energy consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47, 445–487.

    Article  MATH  Google Scholar 

  2. Ng, P. C., & Liew, S. C. (2007). Throughput analysis of IEEE 802.11 multi-hop ad hoc networks. IEEE/ACM Transactions on Networking, 15(2), 309–322.

    Article  Google Scholar 

  3. Bhatia, R., & Li, L. (2007). Throughput optimization of wireless mesh networks with mimo links. In 26th IEEE International Conference on Computer Communications. INFOCOM (pp. 2326–2330).

  4. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  MathSciNet  Google Scholar 

  5. Liu, W., Nishiyama, H., Kato, N., Shimizu, Y., & Kumagai, T. (2013). A novel gateway selection technique for throughput optimization in configurable wireless mesh networks. Wireless Information Networks, 20, 195–203.

    Article  Google Scholar 

  6. Ashraf, O., Abdellatif, S., & Juanole, G. (2009). Gateway selection in backbone wireless mesh networks. In Wireless communications and networking conference (pp. 1–6).

  7. Boushaba, M., Hafid, A., & Gendreau, M. (2014). Source-based routing in wireless mesh networks. Systems Journal, 10, 262–270.

    Article  Google Scholar 

  8. Galvez, J. J., Ruiz, P. M., & Skarmeta, A. F. G. (2011). Responsive on-line gateway load balancing for wireless mesh networks. Ad Hoc Newtorks, 10, 46–61.

    Article  Google Scholar 

  9. Wu, W., Luo, J., & Yang M. (2009). Gateway placement optimization for load balancing in wireless mesh networks. In 13th international conference on computer supported cooperative work in design (pp. 408–413).

  10. Jahanshahi, M., Dehghan, M., & Meybodi, M. R. (2013). LAMR: Learning automata based multicast routing protocol in multi-channel multi-radio wireless mesh networks. Applied Intelligence, 38, 58–77.

    Article  Google Scholar 

  11. Lakshmanan, S., Sivakumar, R., & Sundaresan, K. (2009). Multi-gateway association in wireless mesh networks. Ad Hoc Networks, 7, 622–637.

    Article  Google Scholar 

  12. Gerstel, O., & Ramaswami, R. (2000). Optical layer survivability—An implementation perspective. IEEE Journal on Selected Areas in Communications, 18, 1885–1899.

    Article  Google Scholar 

  13. Aoun, B., Boutaba, R., Iraqi, Y., & Kenward, G. (2006). Gateway placement optimization in wireless mesh networks with QoS Constraints. IEEE Journal on Selected Areas in Communications, 24, 2127–2136.

    Article  Google Scholar 

  14. Yu, W., Fan, L., Li, X.-Y., Nusairat, A., & Wu, Y. (2008). Gateway placement for throughput optimization in wireless mesh networks. Mobile Networks and Applications, 13, 198–211.

    Article  Google Scholar 

  15. Chandra, R., Qiu, L., Jain, K., & Mahdian, M. (2004). Optimizing the placement of integration points in multi-hop wireless networks. In Proceedings of IEEE ICNP.

  16. Xin, Q., & Wang, Y. J. (2009). Gateway selection scheme for throughput optimization in multi-radio multi-channel wireless mesh networks. In 5th international conference on mobile ad hoc and sensor networks (pp. 187–195).

  17. He, B., Xie, B., & Agrawal, D. P. (2008). Optimizing deployment of internet gateway in wireless mesh networks. Computer Communications, 31, 1259–1275.

    Article  Google Scholar 

  18. Seyedazadegan, M., Othman, M., Ali, B. M., & Subramaniam, S. (2013). Zero-degree algorithm for internet gateway placement in backbone wireless mesh networks. Network and Computer Applications, 36, 1705–1723.

    Article  Google Scholar 

  19. Tokito, H., Sasabe, M., Hasegawa, G., & Nakano, H. (2009). Routing method for gateway load balancing in wireless mesh networks. In ICN’09: Proceedings of the 2009 eighth international conference on networks (pp. 127–132).

  20. Huang, C.-F., Lee, H.-W., & Tseng, Y.-C. (2004). A two-tier heterogeneous mobile ad hoc network architecture and its load-balance routing problem. Mobile Networks and Applications, 9, 379–391.

    Article  Google Scholar 

  21. Xie, B., Yu, Y., Kumar, A., & Agrawal, D. P. (2006). Load–balancing and inter domain mobility for wireless mesh networks. In Global telecommunications conference (pp. 409–414).

  22. Jahanshahi, M., & Barmi, A. T. (2014). Multicast routing protocols in wireless mesh networks: A survey. Computing, 96, 1029–1057.

    Article  MathSciNet  MATH  Google Scholar 

  23. Galvez, J. J., Ruiz, P. M., & Skarmeta, F. F. A. (2012). Responsive on-line gateway load balancing for wireless mesh networks. Ad Hoc Networks, 10, 46–61.

    Article  Google Scholar 

  24. Nakamura, R., Ono, H., & Nishikawara, K. (1994). Reliable switching services. Globecom, 3, 1596–1600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Jahanshahi.

Appendix

Appendix

The reliability of IGCs using path tracing method are as below:

For instance P(X3) = P (IGC5-7-10-IGC8) = P (R4) = (0.9)4

$$\begin{aligned} {\text{R}}_{5,8} & = {\text{P}}\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) = P\left( {{\text{X}}_{1} } \right) + P\left( {{\text{X}}_{2} } \right) + P\left( {{\text{X}}_{3} } \right) + P\left( {{\text{X}}_{4} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{4} } \right) \\ & \quad - P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{4} } \right) - P\left( {{\text{X}}_{3} \cap {\text{X}}_{4} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{4} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) \\ & \quad + P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) = {\text{R}}^{4} + {\text{R}}^{3} + {\text{R}}^{4} + {\text{R}}^{4} - {\text{R}}^{3} - {\text{R}}^{4} - {\text{R}}^{4} - {\text{R}}^{4} - {\text{R}}^{5} - {\text{R}}^{6} + {\text{R}}^{4} + {\text{R}}^{5} \\ & \quad {\text{ + R}}^{6} - {\text{R}}^{6} = {\text{R}}^{2} = 0.81 \\ \end{aligned}$$
$$\begin{aligned} {\text{R}}_{4,5} & = {\text{P}}\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) = P\left( {{\text{X}}_{1} } \right) + P\left( {{\text{X}}_{2} } \right) + P\left( {{\text{X}}_{3} } \right) + P\left( {{\text{X}}_{4} } \right) + P\left( {{\text{X}}_{5} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} } \right) \\ & \quad - P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{4} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{4} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{3} \cap {\text{X}}_{4} } \right) - \\ & \quad - P\left( {{\text{X}}_{3} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{4} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{4} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) \\ & \quad + P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) + P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{2} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) \\ & \quad + P\left( {{\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) \\ & \quad - P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) = 0.87561 \\ \end{aligned}$$
$$\begin{aligned} {\text{R}}_{4,8} & = {\text{P}}\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) \\ = P\left( {{\text{X}}_{1} } \right) + P\left( {{\text{X}}_{2} } \right) + P\left( {{\text{X}}_{3} } \right) + P\left( {{\text{X}}_{4} } \right) + P\left( {{\text{X}}_{5} } \right) + P\left( {{\text{X}}_{6} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} } \right) \\ & \; - P\left( {{\text{X}}_{1} \cap {\text{X}}_{4} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{4} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{5} } \right) \\ & \; - P\left( {{\text{X}}_{2} \cap {\text{X}}_{6} } \right) - \left( {{\text{X}}_{3} \cap {\text{X}}_{4} } \right) - P\left( {{\text{X}}_{3} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{3} \cap {\text{X}}_{6} } \right) - P\left( {{\text{X}}_{4} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{4} \cap {\text{X}}_{6} } \right) \\ & \; - P\left( {{\text{X}}_{5} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{4} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{6} } \right) \\ & \; + P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) \\ & \; + P\left( {{\text{X}}_{1} \cap {\text{X}}_{4} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) + P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{5} } \right) \\ & \; + P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{2} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{2} \cap {\text{X}}_{4} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{2} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) \\ & \; + P\left( {{\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{3} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{4} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) \\ & \; - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{6} } \right) \\ & \; - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{4} \cap {\text{X}}_{6} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) \\ & \; - P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{6} } \right) - P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) \\ & \; - P\left( {{\text{X}}_{1} \cap {\text{X}}_{4} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{6} } \right) \\ & \; - P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) - P\left( {{\text{X}}_{2} \cap {\text{X}}_{4} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) - P\left( {{\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) \\ & \; + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) \\ & \; + P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{4} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{1} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) + P\left( {{\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) \\ & \; - P\left( {{\text{X}}_{1} \cap {\text{X}}_{2} \cap {\text{X}}_{3} \cap {\text{X}}_{4} \cap {\text{X}}_{5} \cap {\text{X}}_{6} } \right) = 0.84441528 \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozorgchenani, A., Jahanshahi, M. A Novel Reliability and Traffic Aware Gateway Selection Scheme in Wireless Mesh Networks. Wireless Pers Commun 96, 6111–6128 (2017). https://doi.org/10.1007/s11277-017-4466-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4466-y

Keywords

Navigation