Skip to main content

Advertisement

Log in

EEWNSN: Energy Efficient Wireless Nano Sensor Network MAC Protocol for Communications in the Terahertz Band

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless Nano Sensor Networks (WNSNs) are a dense deployment of nano sensors that communicate through electromagnetic waves over the Terahertz band (0.1–10 THz). The extreme energy, processing power and memory capacity limitation of nano-scale devices and the peculiarities of high operating frequency introduce the requirement to design novel communication paradigm and light MAC protocols for WNSNs. In this paper, we present a new Energy Efficient Wireless Nano Sensor Network MAC protocol (EEWNSN-MAC) for mobile multi-hop wireless nanonetworks. The proposed protocol takes advantage of the clustering mechanism and TDMA scheduling scheme to alleviate the mobility effects and transmission collisions. We evaluate performance of the EEWNSN-MAC protocol compared with a similar previously proposed nano-MAC protocol called “Smart-MAC”. For this purpose, we utilize a new NS-3 simulator module named nano-sim. This evaluation is done for three critical metrics in WNSN, namely, the total energy that is consumed per sent/received packet on the network, the packet loss ratio (PLR) and scalability. Finally, the simulation results demonstrate that the EEWNSN-MAC protocol improves the network performance in terms of energy consumption and PLR and it is more scalable compared to the “Smart-MAC” algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Carrier Sense Multiple Access.

  2. Time Spread On-Off Keying.

  3. Time Division Multiple Access.

  4. Rate Division Time Spread On-Off Keying.

References

  1. Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks Journal, 1(1), 3–19. doi:10.1016/j.nancom.2010.04.001.

    Article  Google Scholar 

  2. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., & Shapiro, E. (2003). DNA molecule provides a computing machine with both data and fuel. PNAS, 100(5), 2191–2196. doi:10.1073/pnas.0535624100.

    Article  Google Scholar 

  3. Akyildiz, I., Brunetti, F., & Blazquez, C. (2008). Nanonetworks: A new communication paradigm. Computer Networks Journal, 52(12), 2260–2279. doi:10.1016/j.comnet.2008.04.001.

    Article  Google Scholar 

  4. Atakan, B., & Akan, O. B. (2010). Carbon nanotube-based nanoscale ad hoc networks. IEEE Communications Magazine, 48(6), 129–135. doi:10.1109/MCOM.2010.5473874.

    Article  Google Scholar 

  5. Enomotoa, A., Moore, M., Suda, T., & Oiwa, K. (2011). Design of self-organizing microtubule networks for molecular communication. Nano Communication Networks Journal, 2(1), 16–24. doi:10.1016/j.nancom.2011.04.002.

    Article  Google Scholar 

  6. Pierobon, M., & Akyildiz, I. F. (2010). A physical end-to-end model for molecular communication in nanonetworks. IEEE Journal on Selected Areas in Communications, 28(4), 602–611. doi:10.1109/JSAC.2010.100509.

    Article  Google Scholar 

  7. Nano Networking: A New Frontier in Communications project, BWN Lab. http://www.ece.gatech.edu/research/labs/bwn/nanos/projectdescription.html. Accessed 7 November 2015.

  8. Dan, Y., Lu, Y., Kybert, N., Luo, Z., & Johnson, A. (2009). Intrinsic response of graphene vapor sensors. Nano Letters, 9(4), 1472–1475. doi:10.1021/nl8033637.

    Article  Google Scholar 

  9. Polichetti, T., Miglietta, M., & Francia, G. D. (2010). Overview on graphene, properties, fabrication and applications. Chimica Oggi, 28(6), 6–9.

    Google Scholar 

  10. Scientific background on the nobel prize in physics 2010: Graphene. The Class for Physics of the Royal Swedish Academy of Science. http://www.nobelprize.org/nobel_prizes/physics/laureates/2010/advanced-physicsprize2010.pdf. Accessed 7 November 2015.

  11. Jornet, J. M., & Akyildiz, I. (2014). Femtosecond-long pulse-based modulation for terahertz band communication in nanonetworks. IEEE Transactions on Communications, 62(5), 17421754. doi:10.1109/TCOMM.2014.033014.130403.

    Article  Google Scholar 

  12. Piro, G., Grieco, L., Boggia, G., & Camarda, P. (2013). Simulating wireless nano sensor networks in the ns-3 platform. In 27th International conference on advanced information networking and applications workshops (WAINA 2013) (pp. 67–74).

  13. Srikanth, V., Chalvadi, S., Sandeep, Vani, & Venkatesh, (2012). Energy efficient, scalable and reliable mac protocol for electromagnetic communication among nano devices. International Journal of Distributed and Parallel Systems (IJDPS), 3(1), 249–256. doi:10.5121/ijdps.2012.3121.

  14. Gin, L., & Akyildiz, I. F. (2009). Molecular communication options for long range nanonetworks. Computer Networks Journal, 53(16), 2753–2766. doi:10.1016/j.comnet.2009.08.001.

    Article  Google Scholar 

  15. Piro, G., Grieco, L., Boggia, G., & Camarda, P. (2013). Nano-sim: Simulating electromagnetic-based nanonetworks in the network simulator. In Proceeding of the 6th international ICST conference on simulation tools and techniques (SIMUTools 2013) (pp. 203–210).

  16. Jorne, J. M., Pujol, J., & Paret, J. (2012). Phlame: A physical layer aware mac protocol for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks Journal, 3(1), 74–81. doi:10.1016/j.nancom.2012.01.006.

    Article  Google Scholar 

  17. Jornet, J. M., & Akyildiz, I. F. (2011). Information capacity of pulse-based wireless nanosensor networks. In 8th Annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON 2011) (pp. 80–88). doi:10.1109/SAHCN.2011.5984951.

  18. Wang, P., Jornet, J. M., Malik, M. G. A., Akkari, N., & Akyildiz, I. F. (2013). Energy and spectrum-aware MAC protocol for perpetual wireless nanosensor networks in the Terahertz Band. Ad Hoc Networks Journal, 11(8), 25412555. doi:10.1016/j.adhoc.2013.07.002.

    Google Scholar 

  19. Pujol, J. (2010). Bridging PHY and MAC layers in wireless electromagnetic nanonetworks. Master’s Thesis. Georgia Institute of Technology. http://upcommons.upc.edu/pfc/bitstream/2099.1/11773/1/Thesis.pdf. Accessed 7 November 2015.

  20. Jornet, J. M., & Akyildiz, I. F. (2012). Joint energy harvesting and communication analysis for perpetual wireless nanosensor networks in the terahertz band. IEEE Transactions on Nanotechnology, 11(3), 570–580. doi:10.1109/TNANO.2012.2186313.

    Article  Google Scholar 

  21. Dargie, W., & Poellabauer, C. (2010). Fundamentals of wireless sensor networks: Theory and practice. Hoboken: Wiley.

    Book  Google Scholar 

  22. Cho, S., & Hayes, J. P. (2005). Impact of mobility on connection stability in ad hoc networks. In IEEE Wireless communications and networking conference (WCNC), New Orleans, USA, 16501656. doi:10.1109/WCNC.2005.1424761.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Negar Rikhtegar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rikhtegar, N., Keshtgari, M. & Ronaghi, Z. EEWNSN: Energy Efficient Wireless Nano Sensor Network MAC Protocol for Communications in the Terahertz Band. Wireless Pers Commun 97, 521–537 (2017). https://doi.org/10.1007/s11277-017-4517-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4517-4

Keywords

Navigation