Skip to main content

Advertisement

Log in

Fault Tolerant Algorithms for Multiple Infrastructure Provider Cooperation in Network Virtualization Environment Based on Auctioning

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The multiple infrastructure provider network virtualization system is a self-governing system that independently figures out the appropriate number of infrastructure providers and selects the most suitable infrastructure providers in the group to map the virtual network request. This work applies a fault tolerant market-based strategy for efficient working of a network virtualization environment by cooperation of multiple infrastructure providers while dealing with restricted or absolute failures of infrastructure providers during embedding in an unknown, random and dynamic virtual network system. The approach uses auctioning mechanism to decide on the infrastructure provider to serve the virtual network requests, sent by the service providers. A request can be mapped either by a single infrastructure provider or cooperatively by multiple infrastructure providers, depending on the requirements of the service provider’s request and the network resources available with the infrastructure provider. The infrastructure provider that matches best the demands of the service provider is chosen by the system. The feasibility of the proposed methodology is tested by implementing the approach on a group of multiple infrastructure providers that participate in the auctioning mechanism to serve multiple service providers’ virtual network requests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Feamster, N., Gao, L., & Rexford, J. (2007). How to lease the Internet in your spare time. ACM SIGCOMM Computer Communication Review, 37(1), 61–64.

    Article  Google Scholar 

  2. Zhu, Y., Zhang-Shen, R., Rangarajan, S., & Rexford, J. (2008). Cabernet: Connectivity architecture for better network services. In Proceedings of the 2008 ACM CoNEXT conference (p. 64). ACM.

  3. http://www.4ward-project.eu/.

  4. Meier, S., Barisch, M., Kirstädter, A., Schlosser, D., Duelli, M., Jarschel, M., et al. (2011). Provisioning and operation of virtual networks. Electronic Communications of the EASST, 37.

  5. Bless, R., & Werle, C. (2009). Control plane issues in the 4WARD network virtualization architecture. Electronic Communications of the EASST, 17.

  6. Houidi, I., Louati, W., Ameur, W. B., & Zeghlache, D. (2011). Virtual network provisioning across multiple substrate networks. Computer Networks, 55(4), 1011–1023.

    Article  MATH  Google Scholar 

  7. Houidi, I., Louati, W., Zeghlache, D., & Baucke, S. (2009). Virtual resource description and clustering for virtual network discovery. In Proceedings of ICC.

  8. Schaffrath, G., Werle, C., Papadimitriou, P., Feldmann, A., Bless, R., Greenhalgh, A., et al. (2009). Network virtualization architecture: Proposal and initial prototype. In Proceedings of the 1st ACM workshop on virtualized infrastructure systems and architectures (pp. 63–72). ACM.

  9. Samuel, F., Chowdhury, M., & Boutaba, R. (2013). Polyvine: Policy-based virtual network embedding across multiple domains. Journal of Internet Services and Applications, 4(1), 1–23.

    Article  Google Scholar 

  10. Zaheer, F. E., Xiao, J., & Boutaba, R. (2010). Multi-provider service negotiation and contracting in network virtualization. In Network operations and management symposium (NOMS), 2010 IEEE (pp. 471–478). IEEE.

  11. GENI: Global Environment for Network Innovations. http://www.geni.net.

  12. Anderson, T., Peterson, L., Shenker, S., & Turner, J. (2005). Overcoming the Internet impasse through virtualization. Computer, 4, 34–41.

    Article  Google Scholar 

  13. Bavier, A., Feamster, N., Huang, M., Peterson, L., & Rexford, J. (2006). In VINI veritas: Realistic and controlled network experimentation. In ACM SIGCOMM computer communication review (Vol. 36, No. 4, pp. 3–14). ACM.

  14. Touch, J. (2001). Dynamic Internet overlay deployment and management using the X-Bone. Computer Networks, 36(2), 117–135.

    Article  Google Scholar 

  15. He, J., Zhang-Shen, R., Li, Y., Lee, C. Y., Rexford, J., & Chiang, M. (2008). DaVinci: Dynamically adaptive virtual networks for a customized internet. In Proceedings of the 2008 ACM CONEXT conference (p. 15). ACM.

  16. Bhatia, S., Motiwala, M., Muhlbauer, W., Mundada, Y., Valancius, V., Bavier, A., et al. (2008). Trellis: A platform for building flexible, fast virtual networks on commodity hardware. In Proceedings of the 2008 ACM CoNEXT conference (p. 72). ACM.

  17. Louati, W. (2007). On demand virtual network service for dynamic networks (Doctoral dissertation, Ph.D. Thesis Number 07INT003).

  18. Zhu, Y., & Ammar, M. H. (2006). Algorithms for assigning substrate network resources to virtual network components. In INFOCOM (Vol. 1200, No. 2006, pp. 1–12).

  19. Yu, M., Yi, Y., Rexford, J., & Chiang, M. (2008). Rethinking virtual network embedding: Substrate support for path splitting and migration. ACM SIGCOMM Computer Communication Review, 38(2), 17–29.

    Article  Google Scholar 

  20. Ricci, R., Alfeld, C., & Lepreau, J. (2003). A solver for the network testbed mapping problem. ACM SIGCOMM Computer Communication Review, 33(2), 65–81.

    Article  Google Scholar 

  21. Lu, J., & Turner, J. (2006). Efficient mapping of virtual networks onto a shared substrate. http://openscholarship.wustl.edu/cse_research/186.

  22. Chowdhury, N. M., Rahman, M. R., & Boutaba, R. (2009). Virtual network embedding with coordinated node and link mapping. In INFOCOM 2009, IEEE (pp. 783–791). IEEE.

  23. Houidi, I., Louati, W., & Zeghlache, D. (2008). A distributed virtual network mapping algorithm. In Communications, 2008. ICC’08. IEEE international conference on (pp. 5634–5640). IEEE.

  24. Inführ, J., & Raidl, G. R. (2011). Introducing the virtual network mapping problem with delay, routing and location constraints. In Network optimization (pp. 105–117). Berlin: Springer.

  25. Zhang, S., Qian, Z., Tang, B., Wu, J., & Lu, S. (2011). Opportunistic bandwidth sharing for virtual network mapping. In Global telecommunications conference (GLOBECOM 2011), 2011 IEEE (pp. 1–5). IEEE.

  26. Fajjari, I., Aitsaadi, N., Pujolle, G., & Zimmermann, H. (2011). VNE-AC: Virtual network embedding algorithm based on ant colony metaheuristic. In Communications (ICC), 2011 IEEE international conference on (pp. 1–6). IEEE.

  27. Cheng, X., Su, S., Zhang, Z., Shuang, K., Yang, F., Luo, Y., et al. (2012). Virtual network embedding through topology awareness and optimization. Computer Networks, 56(6), 1797–1813.

    Article  Google Scholar 

  28. Tesauro, G., Chess, D. M., Walsh, W. E., Das, R., Segal, A., Whalley, I., et al. (2004). A multi-agent systems approach to autonomic computing. In Proceedings of the third international joint conference on autonomous agents and multiagent systems (Vol. 1, pp. 464–471). IEEE Computer Society.

  29. Houidi, I., Louati, W., Zeghlache, D., Papadimitriou, P., & Mathy, L. (2010). Adaptive virtual network provisioning. In Proceedings of the second ACM SIGCOMM workshop on virtualized infrastructure systems and architectures (pp. 41–48). ACM.

  30. Xin, Y., Baldine, I., Mandal, A., Heermann, C., Chase, J., & Yumerefendi, A. (2011). Embedding virtual topologies in networked clouds. In Proceedings of the 6th international conference on future internet technologies (pp. 26–29). ACM.

  31. Marquezan, C. C., Granville, L. Z., Nunzi, G., & Brunner, M. (2010). Distributed autonomic resource management for network virtualization. In Network operations and management symposium (NOMS), 2010 IEEE (pp. 463–470). IEEE.

  32. Rahman, M. R., & Boutaba, R. (2013). SVNE: Survivable virtual network embedding algorithms for network virtualization. IEEE Transactions on Network and Service Management, 10(2), 105–118.

    Article  Google Scholar 

  33. Melo, M., Sargento, S., Killat, U., Timm-Giel, A., & Carapinha, J. (2013). Optimal virtual network embedding: Node-link formulation. IEEE Transactions on Network and Service Management, 10(4), 356–368.

    Article  Google Scholar 

  34. Chowdhury, M., Rahman, M. R., & Boutaba, R. (2012). Vineyard: Virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Transactions on Networking (TON), 20(1), 206–219.

    Article  Google Scholar 

  35. Zhang, Z., Su, S., Lin, Y., Cheng, X., Shuang, K., & Xu, P. (2015). Adaptive multi-objective artificial immune system based virtual network embedding. Journal of Network and Computer Applications, 53, 140–155.

    Article  Google Scholar 

  36. Wang, X. G., Zheng, X. W., & Lu, D. J. (2014). A heuristic virtual network mapping algorithm. In Intelligent computing methodologies (pp. 385–395). Berlin: Springer.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deo Prakash Vidyarthi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pathak, I., Vidyarthi, D.P. Fault Tolerant Algorithms for Multiple Infrastructure Provider Cooperation in Network Virtualization Environment Based on Auctioning. Wireless Pers Commun 97, 1537–1561 (2017). https://doi.org/10.1007/s11277-017-4585-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4585-5

Keywords

Navigation