Skip to main content

Advertisement

Log in

Performance Improvement of Two-Hop Relay System Using Polarization Diversity

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

With growing demands for mobile data, providing reliable communication with high quality of service has become a critical issue. Wireless relaying has been recognized as an effective solution to enhance system coverage, data rate, reliability and energy efficiency by introducing additional network node-relay. However, complex wireless channel characteristics, such as fading, path loss, noise and interference limits the performance of such systems in a manner that it is dominated by the worst channel. That is why additional techniques are necessary to be implemented in order to improve the characteristics of this bottleneck link, and performance of relay system as whole. Multi-antenna relaying has emerged as a promising technique to overcome bottleneck effect in relay system and provide performance enhancements, but the small size of network nodes limits their use at wireless terminals. In this paper we propose the implementation of polarization diversity, where one compact dual-polarized antenna is used instead of two adequately separated antennas. Maximal ratio combining of diversity signals in amplify-and-forward relaying systems applying variable gain is analysed. Mixed Rayleigh/Ricean fading environment is assumed, while two diversity signals are described as two correlated and non-identical Rayleigh fading channels. Novel analytical model for determining the performance of the analysed relay system expressed through the system’s outage and bit error rate is derived. Excellent match between Monte-Carlo simulations and numerical results confirms the validity of the proposed analytical model. Furthermore, the presented results illustrate the effect of various channels parameters on the system performance, such as Ricean K factor, average signal to noise ratios, diversity signals’ correlation and cross-polar discrimination. For a given performance requirements, the proposed solution can significantly improve relay system performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Hasna, M. O., & Alouini, M. S. (2003). A performance study of dual-transmissions with fixed gain relays. In Proceedings of IEEE International Conference ov Acoustics, Speech, and Signal Processing (ICASSP03).

  2. Karagiannidis, G. K. (2006). Performance bounds of multihop wireless communications with blind relays over generalized fading channels. IEEE Transactions on Wireless Communications, 5(3), 498–503.

    Article  Google Scholar 

  3. Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.

    Article  MathSciNet  MATH  Google Scholar 

  4. Van Der Meulen, E. C. (1971). Three-terminal communication channels. Advances in Applied Probability, 3(1), 120–154.

    Article  MathSciNet  MATH  Google Scholar 

  5. Van Hecke, J., Del Fiorentino, P., Lottici, V., Giannetti, F., Vandendorpe, L., & Moeneclaey, M. (2017). Distributed dynamic resource allocation for cooperative cognitive radio networks with multi-antenna relay selection. IEEE Transactions on Wireless Communications, 16(2), 1236–1249.

    Article  Google Scholar 

  6. Khan, M. A. (2016). Spectrally efficient cooperative relay networks using signal space diversity. Electronic Thesis and Dissertation Repository.

  7. Alfitouri, A., & Hamdi, K. A. (2017). Performance analysis of optimal relay power control in MIMO system. In IEEE Wireless Communications and Networking Conference (WCNC), pp. 1–6.

  8. Aloqlah, M. S., & Nawafleh, F. A. (2017). An accurate performance analysis for regenerative multi-hop relaying in wireless networks over composite multipath/shadowed fading. Wireless Personal Communications,. doi:10.1007/s11277-017-4164-9.

    Google Scholar 

  9. Khoshafa, M. H., & Al-Ahmadi, S. (2017). On the capacity of underlay multihop cognitive relaying over generalized-K composite fading channels. Wireless Personal Communications,. doi:10.1007/s11277-017-4171-x.

    Google Scholar 

  10. Dixit, D., & Sahu, P. (2017). Performance of dual-hop DF relaying systems with QAM schemes over mixed \(\eta\)-\(\mu\) and \(\kappa\)-\(\mu\) fading channels. Transactions on Emerging Telecommunications Technologies. doi:10.1002/ett.3179.

  11. Ha, D. B., Tran, D. D., Ha, D. H., & Nguyen, A. N. (2017). Improving network performance by using multiple power-constrained amplify-and-forward relays. In International Conference on Information Networking (ICOIN), pp. 231–235.

  12. Prasad, S., & Singh, S. P. (2016). BER analysis of various modulation schemes over GG fading channel for differential dual hop relaying system. In 2nd International Conference on Communication Control and Intelligent Systems (CCIS), IEEE, pp. 8–12.

  13. Adinoyi, A., & Yanikomeroglu, H. (2007). Cooperative relaying in multi-antenna fixed relay networks. IEEE Transactions on Wireless Communications, 6(2), 533–544.

    Article  Google Scholar 

  14. Bao, V. N. Q., Bac, D. H., Cuong, L. Q.,  Phu, L. Q., & Thuan, T. D. (2011). Performance analysis of partial relay selection with multi-antenna destination cooperation. In IEEE International Conference on ICT Convergence (ICTC) (pp. 101–105).

  15. Thang, L. T., Tuyen, L. P., & Bao, V. N. Q. (2012). Outage performance of multi-antenna cooperative incremental relaying systems in the absence of direct link. In IEEE 14th International Conference Advanced Communcation Technology (ICACT) (Vol. 14, pp. 783–787).

  16. Fan, Y., & Thompson, J. (2007). MIMO configurations for relay channels: Theory and practice. IEEE Transactions on Wireless Communications, 6(5), 1774–1786.

    Article  Google Scholar 

  17. Lee, W. C. Y., & Yeh, Y. S. (1972). Polarization diversity system for mobile radio. IEEE Transactions on Communications, 20, 5.

    Google Scholar 

  18. Ilic-Delibasic, M., Pejanovic-Djurisic, M., & Prasad, R. (2012). A novel method for performance analysis of OFDM polarization diversity system in Ricean fading environment. Wireless Personal Communications, 63(3), 751–764.

    Article  Google Scholar 

  19. Ozdemir, T. (2009). A polarization diversity multi-beam antenna for ZigBee applications. In Proceedings on IEEE Wireless and Microwave Technology Conference.

  20. Delibasic, M., & Pejanovic-Djurisic, M. (2017). Performance improvement using polarization diversity in precise agriculture communication platform. Wireless Personal Communications, 92(1), 169–179.

    Article  Google Scholar 

  21. Delibasic, M., & Pejanovic-Djurisic, M. (2016). Statistical properties of two hop relay systems with polarization diversity. In Proceedings on IEEE Personal Indoor and Mobile Radio Communications (PIMRC), pp. 1–6.

  22. Delibasic, M., & Pejanovic-Djurisic, M. (2017). Dual-hop amplify-and-forward relay system over non-identical Ricean fading channels. Wireless Personal Communications, 93(3),  675–686.

    Article  Google Scholar 

  23. Ilic-Delibasic, M., & Pejanovic-Djurisic, M. (2014). Performance improvement of decode-and-forward relay systems using dual polarized antenna. In Wireless Telecommunications Symposium (WTS), 2014, pp. 1–5.

  24. Ilic-Delibasic, M., & Pejanovic-Djurisic, M. (2014) Performance improvement of two-hop cooperative relay system under correlated Ricean fadings. In 4th International Conference on Wireless Communications, Vehicular Technology, Information Theory and Aerospace & Electronic Systems (VITAE), 2014, pp. 1–4.

  25. Delibasic, M., & Pejanovic-Djurisic, M. (2014). Selective cooperative relaying system with polarization diversity. In 22nd Telecommunications Forum (TELFOR), pp. 387–390.

  26. Dong, X., & Beaulieu, N. C. (2002). Optimal maximal ratio combining with correlated diversity branches. IEEE Communications Letters, 6(1), 22–24.

    Article  Google Scholar 

  27. Simon, M. K., & Alouini, M. S. (2005). Digital communication over fading channels (2nd ed.). Hoboken: Wiley.

    Google Scholar 

  28. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals series and products. San Diego, CA: Academic Press.

    MATH  Google Scholar 

  29. Hasna, M. O., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maja Delibasic.

Appendix: Derivation of OP and BER Expressions

Appendix: Derivation of OP and BER Expressions

Starting from the integral definition of CDF of total SNR, given in (5) we get:

$$\begin{aligned} \begin{aligned} F\left( \gamma \right) =&1 - \frac{{\left( {1 + K} \right) {e^{ - K}}}}{{2\alpha {{\bar{\gamma }}_2}}}{e^{ - \frac{{\left( {1 + K} \right) \gamma }}{{{{\bar{\gamma }}_2}}}}}\int \limits _0^\infty \left[ {\left( {1 + \alpha } \right) {e^{ - \frac{{2\gamma \left( {\gamma + w} \right) }}{{w\left( {1 + \alpha } \right) {{\bar{\gamma }}_1}}}}} - \left( {1 - \alpha } \right) {e^{ - \frac{{2\gamma \left( {\gamma + w} \right) }}{{w\left( {1 - \alpha } \right) {{\bar{\gamma }}_1}}}}}} \right] \\&\times {I_0}\left( {2\sqrt{\frac{{K\left( {1 + K} \right) \left( {\gamma + w} \right) }}{{{{\bar{\gamma }}_2}}}} } \right) dw, \end{aligned} \end{aligned}$$
(11)

since \(\int \limits _0^\infty p(\gamma ) d\gamma =1\).

Using the alternative representation of \(I_{0}\), i.e. \({I_0}\left( z \right) = \sum \limits _{k = 0}^\infty {\frac{{{\left( z/2 \right) }^{2k}}}{ \left( k! \right) ^2}}\), we get:

$$\begin{aligned} \begin{aligned} F\left( \gamma \right) =&1 - \frac{{\left( {1 + K} \right) {e^{ - K}}}}{{2\alpha {{\bar{\gamma }}_2}}}{e^{ - \frac{{\left( {1 + K} \right) \gamma }}{{{{\bar{\gamma }}_2}}}}}\sum \limits _{n = 0}^\infty {\frac{{{{\left( {K\left( {1 + K} \right) } \right) }^n}}}{{{{\left( {n!} \right) }^2}{{\bar{\gamma }}_2}^n}}}\\&\times \left[ \left( {1 + \alpha } \right) {e^{ - \frac{{2\gamma }}{{\left( {1 + \alpha } \right) {{\bar{\gamma }}_1}}}}}\int \limits _0^\infty {{e^{ - \frac{{2{\gamma ^2}}}{{w\left( {1 + \alpha } \right) {{\bar{\gamma }}_1}}}}}{e^{ - \frac{{\left( {1 + K} \right) w}}{{{{\bar{\gamma }}_2}}}}}{{\left( {\gamma + w} \right) }^n}dw } \right. \\&\left. - \left( {1 - \alpha } \right) {e^{ - \frac{{2\gamma }}{{\left( {1 - \alpha } \right) {{\bar{\gamma }}_1}}}}}\int \limits _0^\infty {{e^{ - \frac{{2{\gamma ^2}}}{{w\left( {1 - \alpha } \right) {{\bar{\gamma }}_1}}}}}{e^{ - \frac{{\left( {1 + K} \right) w}}{{{{\bar{\gamma }}_2}}}}}{{\left( {\gamma + w} \right) }^n}dw} \right] , \end{aligned} \end{aligned}$$
(12)

Rewriting \((\gamma +w)^{n}=\sum \limits _{m=0}^{n}\left( {\begin{array}{c}n\\ m\end{array}}\right) \gamma ^{m}w^{n-m}\), the following expression is obtained:

$$\begin{aligned} \begin{aligned} F\left( \gamma \right) =&1 - \frac{{\left( {1 + K} \right) {e^{ - K}}}}{{2\alpha {{\bar{\gamma }}_2}}}{e^{ - \frac{{\left( {1 + K} \right) \gamma }}{{{{\bar{\gamma }}_2}}}}}\sum \limits _{n = 0}^\infty {\frac{{{{\left( {K\left( {1 + K} \right) } \right) }^n}}}{{{{\left( {n!} \right) }^2}{{\bar{\gamma }}_2}^n}}} \sum \limits _{m = 0}^n {\left( {\begin{array}{c}n\\ m\end{array}}\right) {\gamma ^m}} \\&\times \left[ {\left( {1 + \alpha } \right) {e^{ - \frac{{2\gamma }}{{\left( {1 + \alpha } \right) {{\bar{\gamma }}_1}}}}}\int \limits _0^\infty {{e^{ - \frac{{2{\gamma ^2}}}{{w\left( {1 + \alpha } \right) {{\bar{\gamma }}_1}}}}}{e^{ - \frac{{\left( {1 + K} \right) w}}{{{{\bar{\gamma }}_2}}}}}{w^{n - m}}dw} } \right. \\&\left. { - \left( {1 - \alpha } \right) {e^{ - \frac{{2\gamma }}{{\left( {1 - \alpha } \right) {{\bar{\gamma }}_1}}}}}\int \limits _0^\infty {{e^{ - \frac{{2{\gamma ^2}}}{{w\left( {1 - \alpha } \right) {{\bar{\gamma }}_1}}}}}{e^{ - \frac{{\left( {1 + K} \right) w}}{{{{\bar{\gamma }}_2}}}}}{w^{n - m}}dw} } \right] . \end{aligned} \end{aligned}$$
(13)

With the aid of [28, Eq. (3.471–9)], i.e. \(\int \limits _0^\infty {{x^{\nu - 1}}{e^{ - \frac{\beta }{x} - \gamma x}}dx = 2{{\left( {\frac{\beta }{\gamma }} \right) }^{\frac{\nu }{2}}}{K_\nu }\left( {2\sqrt{\beta \gamma } } \right) }\), having \(\nu =n-m+1\), \(\beta =\frac{2\gamma ^{2}}{(1\pm \alpha )\bar{\gamma }_1}\) and \(\gamma =\frac{1+K}{\bar{\gamma }_2}\) we finally obtain the expression given in (6).

Similarly, starting from the BER definition (7), we easily get (9). Furthermore, it is known that \(\frac{1}{\sqrt{2\pi }}\int \limits _0^{\infty }e^{-x^{2}/2}=\frac{1}{2}\), thus:

$$\begin{aligned} \begin{aligned}&{P_b}\left( e \right) = \frac{1}{2} - \frac{{\left( {1 + K} \right) {e^{ - K}}}}{{\sqrt{2\pi } \alpha {{\bar{\gamma }}_2}}}\sum \limits _{n = 0}^\infty {\frac{{{K^n}}}{{{{\left( {n!} \right) }^2}}}} \sum \limits _{m = 0}^n\left( {\begin{array}{c}n\\ m\end{array}}\right) {\left( {\frac{{1 + K}}{{{{\bar{\gamma }}_2}}}} \right) ^{\frac{{n + m - 1}}{2}}}{\left( {\frac{2}{{{{\bar{\gamma }}_1}}}} \right) ^{\frac{{n - m + 1}}{2}}}\times \\&\left[ {\frac{1}{{\left( {1 + \alpha } \right) {^{\frac{{n - m - 1}}{2}}}}}\int \limits _0^\infty {{e^{ - \frac{{{x^2}}}{2}}}{e^{ - \left( {\frac{2}{{\left( {1 + \alpha } \right) {{\bar{\gamma }}_1}}} + \frac{{\left( {1 + K} \right) }}{{{{\bar{\gamma }}_2}}}} \right) \frac{{{x^2}}}{\beta }}}{{\left( {\frac{{{x^2}}}{\beta }} \right) }^{n + 1}}} {K_{n - m + 1}}\left( {\frac{{{x^2}}}{\beta }\sqrt{\frac{{8\left( {1 + K} \right) }}{{\left( {1 + \alpha } \right) {{\bar{\gamma }}_1}{{\bar{\gamma }}_2}}}} } \right) }dx \right. \\&-\left. {\frac{1}{{\left( {1 - \alpha } \right) {^{\frac{{n - m - 1}}{2}}}}}\int \limits _0^\infty {{e^{ - \frac{{{x^2}}}{2}}}{e^{ - \left( {\frac{2}{{\left( {1 - \alpha } \right) {{\bar{\gamma }}_1}}} + \frac{{\left( {1 + K} \right) }}{{{{\bar{\gamma }}_2}}}} \right) \frac{{{x^2}}}{\beta }}}{{\left( {\frac{{{x^2}}}{\beta }} \right) }^{n + 1}}} {K_{n - m + 1}}\left( {\frac{{{x^2}}}{\beta }\sqrt{\frac{{8\left( {1 + K} \right) }}{{\left( {1 - \alpha } \right) {{\bar{\gamma }}_1}{{\bar{\gamma }}_2}}}} } \right) } dx\right] \end{aligned} \end{aligned}$$
(14)

Introducing the change of variables \(\frac{x^{2}}{\beta }=t\) (\(dx=\frac{\sqrt{\beta }}{2\sqrt{t}}dt\)), and using [28, Eq. (6.621–3)], with the following parameters of defined integral: \(\mu =n+\frac{3}{2}\), \(\alpha =\frac{\beta }{2}+\frac{(1+K)}{\bar{\gamma }_2}+\frac{2}{(1\pm \alpha )\bar{\gamma }_1}\), \(\nu =n-m+1\) and \(\beta =2\sqrt{\frac{2(1+K)}{(1\pm \alpha )\bar{\gamma }_1\bar{\gamma }_2}}\), we get average BER as in (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delibasic, M. Performance Improvement of Two-Hop Relay System Using Polarization Diversity. Wireless Pers Commun 97, 1781–1798 (2017). https://doi.org/10.1007/s11277-017-4648-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4648-7

Keywords

Navigation