Skip to main content
Log in

Frequency Selective Surface as Superstrate on Wideband Dielectric Resonator Antenna for Circular Polarization and Gain Enhancement

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this work, dielectric resonator antenna with superstrate is designed and analysed. Here, Frequency selective surface incorporated as superstrate on DRA behaves as a polarizer to achieve circular polarization. Impedance bandwidth of the DRA is 73.67% at 5.81 GHz operates in the frequency band 3.68–7.96 GHz. 3 dB axial ratio bandwidth is 18.93% at centre frequency 5.81 GHz and the overlapping bandwidth is 25.7%. Peak Gain of the antenna is also enhanced by 5.6 dBic at 6.5 GHz. The design structure simulated on Ansoft HFSS 15 and experimentally verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Petosa, A., Ittipiboon, A., Antar, Y. M. M., Roscoe, Y. M. M., & Cuhaci, M. (1998). Recent advances in dielectric-resonator antenna technology. IEEE Antennas Propagation Magazine, 40, 35–48.

    Article  Google Scholar 

  2. Petosa, A., & Ittipiboon, A. (2010). Dielectric resonator antennas: A historical review and the current state of the art. IEEE Antennas Propagation Magazine, 52, 91–116.

    Article  Google Scholar 

  3. Engheta, N., & Ziolkowski, R. W. (2006). Metamaterials: Physics and engineering explorations. London: Wiley-IEEE Press.

  4. Ziolkowski, R. W. (2003). Design, fabrication, and testing of double negative metamaterials. IEEE Transactions on Antennas and Propagation, 51, 1516–1529.

    Article  Google Scholar 

  5. Attia, H., Yousefi, L., & Ramahi, O. M. (2011). Analytical model for calculating the radiation field of microstrip antennas with artificial magnetic superstrates: Theory and experiment. IEEE Transactions on Antennas and Propagation, 59, 1438–1445.

    Article  Google Scholar 

  6. Attia, H., Siddiqui, O. F., Suwan, N., & Ramahi, O. M. (2013). Analytical and experimental study of gain enhancement in antenna arrays covered with high index metamaterial superstrate. Microwave and Optical Technology Letters, 55, 215–218.

    Article  Google Scholar 

  7. Zhou, R., Zhang, H., & Xin, H. (2008). Experimental demonstration of narrow beam monopole antenna embedded in low effective index of refraction (n < 1) wire medium. Microwave and Optical Technology Letters, 50, 2341–2345.

    Article  Google Scholar 

  8. Wang, B., & Huang, K. M. (2010). Shaping the radiation pattern with MU and epsilon-near-zero metamaterials. Progress in Electromagnetics Research, 106, 107–119.

    Article  Google Scholar 

  9. Lee, D. H., Lee, Y. J., Yeo, J., Mittra, R., & Park, W. S. (2007). Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement. IET Microwaves, Antennas and Propagation, 1, 248–254.

    Article  Google Scholar 

  10. Foroozesh, A., & Shafai, L. (2010). Investigation into the effects of the patch-type FSS superstrate on the high gain cavity resonance antenna design. IEEE Transactions on Antennas and Propagation, 58, 258–270.

    Article  Google Scholar 

  11. Chiu, S. C., & Chen, S. Y. (2012). Circularly polarized resonant cavity antenna using single-layer double-sided FSS superstrate. In IEEE antennas and propagation society international symposium.

  12. Vaidya, A. R., Gupta, R. K., Mishra, S. K., & Mukherjee, J. (2012). Efficient, high gain with low side lobe level antenna structures using parasitic patches on multilayer superstrate. Microwave and Optical Technology Letters, 54, 1488–1493.

    Article  Google Scholar 

  13. Foroozesh, A., & Shafai, L. (2012). On the characteristics of the highly directive resonant cavity antenna having metal strip grating superstrate. IEEE Transactions on Antennas and Propagation, 60, 78–91.

    Article  Google Scholar 

  14. Pirhadi, A., Bahrami, H., & Nasri, J. (2012). Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer. IEEE Transactions on Antennas and Propagation, 60, 2101–2106.

    Article  Google Scholar 

  15. Leung, K. W., & Ng, H. K. (2003). Theory and experiment of circularly polarized dielectric resonator antenna with a parasitic patch. IEEE Transactions on Antennas and Propagation, 51, 405–412.

    Article  Google Scholar 

  16. Leung, K. W. (2004). Circularly polarized dielectric resonator antenna excited by a shorted annular slot with a backing cavity. IEEE Transactions on Antennas and Propagation, 52, 2765–2769.

    Article  Google Scholar 

  17. Almpanis, G., Fumeaux, C., & Vahldieck, R. (2006). Offset cross-slot-coupled dielectric resonator antenna for circular polarization. IEEE Microwave Wireless Components Letters, 16, 461–463.

    Article  Google Scholar 

  18. Han, R. C., Zhong, S. S., & Liu, J. (2014). Broadband circularly polarized dielectric resonator antenna fed by wideband switched line coupler. Electronics Letters, 50(2014), 725–726.

    Article  Google Scholar 

  19. Kakade, A. B., & Kumbhar, M. S. (2014). Wideband circularly polarized conformal strip fed three layer hemispherical dielectric resonator antennas with parasitic patch. Microwave and Optical Technology Letters, 56, 72–77.

    Article  Google Scholar 

  20. Wang, K. X., & Wong, H. (2015). A circularly polarized antenna by using rotated-stair dielectric resonator. IEEE Antennas and Wireless Propagation Letters, 14, 787–790.

    Article  Google Scholar 

  21. Chang, W., & Feng, Z. (2009). Investigation of a novel wideband feeding technique for dielectric ring resonator antennas. IEEE Antennas and Wireless Propagation Letters, 8, 348–351.

    Article  Google Scholar 

  22. Bijumon, P. V., Menon, S. K., Suma, M. N., Sebastian, M. T., & Mohanan, P. (2005). Broadband cylindrical dielectric resonator antenna excited by a modified microstrip line. IEE Electronics Letters, 41, 385–387.

    Article  Google Scholar 

  23. Chaudhary, R. K., Kumar, R., & Srivastava, K. V. (2013). Wideband ring dielectric resonator antenna with annular-shaped microstrip feed. IEEE Antennas and Wireless Propagation Letters, 12, 595–598.

    Article  Google Scholar 

  24. Sahu, B., Tripathi, P., Singh, R., & Singh, S. P. (2014). Dual segment rectangular dielectric resonator antenna with metamaterial for improvement of bandwidth and gain. International Journal of RF and Microwave Computer-Aided Engineering, 24, 646–655.

    Article  Google Scholar 

  25. Euler, M., & Fusco, V. F. (2010). RCS control using cascaded circularly polarized frequency selective surfaces and an AMC structure as a switchable twist polarizer. Microwave and Optical Technology Letters, 52, 577–580.

    Article  Google Scholar 

  26. Kumar, T., Gautam, A. K., Kanaujia, B. K., & Rambabu, K. (2015). Design of miniaturised UWB antenna for oil pipeline imaging. Electronics Letters, 51, 1–2.

    Google Scholar 

  27. Oloumi, D., Pettersson, M., Mousavi, P., & Rambabu, K. (2015). Imaging of oil-well perforations using UWB synthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing, 53(8), 4510–4520.

    Article  Google Scholar 

Download references

Acknowledgement

We would like to thank Professor A. R. Harish, IIT Kanpur, India, for his permission to access antenna lab for the measurement of antenna parameters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Binod Kumar Kanaujia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangwar, D., Das, S., Yadava, R.L. et al. Frequency Selective Surface as Superstrate on Wideband Dielectric Resonator Antenna for Circular Polarization and Gain Enhancement. Wireless Pers Commun 97, 3149–3163 (2017). https://doi.org/10.1007/s11277-017-4667-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4667-4

Keywords

Navigation