Skip to main content
Log in

Joint Rapid Spectrum Scanning and Signal Feature Recognition Scheme Using Compressed Sensing and Cyclostationary Technologies

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

This paper proposes a joint rapid spectrum scanning and signal feature recognition scheme by using both compressed sensing (CS) and cyclostationary technologies to solve the paradox of rapid spectrum scanning and accurate signal feature recognition. First, a new system architecture for signal feature recognition is designed based on rapid spectrum scanning results to decrease the times of proposed signal feature recognition scheme. Moreover, an improved CS technology is brought forward to accelerate the sensing speed without reconstructing received signals for a rapid spectrum scanning. And a tunable compression gain is proposed to reduce both computation complexity and sampling rate based on the difference of modulation mode and symbol rate for various signals. To further reduce the effect of noise on the modulation classification performance, a novel noise reduction scheme is proposed using the cyclostationary technology. Results prove that proposed scheme can achieve both rapid spectrum scanning and accurate signal feature recognition simultaneously. Furthermore, it can reduce the sampling rate for CS over 30% and achieves a signal detection gain of 2–3 dB with signal to noise ratio constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Federal Communications Commission. (Feb. 2005). Notice of proposed rule making and order: Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies (pp. 03–108). No: ET Docket.

  2. Stotas, S., & Nallanathan, A. (2011). Enhancing the capacity of spectrum sharing cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(8), 3768–3779.

    Article  Google Scholar 

  3. McHenry, M. A. (2005, August) NSF Spectrum occupancy measurements project summary. Shared spectrum company report.

  4. Chien, Wen-Bin, Yang, Chih-Kai, & Huang, Yuan-Hao. (2010). Energy-saving cooperative spectrum sensing processor for cognitive radio system. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(4), 711–723.

    Article  MathSciNet  Google Scholar 

  5. Lin, You-En, Liu, Kun-Hsing, & Hsieh, Hung-Yun. (2012). On using interference-aware spectrum sensing for dynamic spectrum access in cognitive radio networks. IEEE Transactions on Mobile Computing, 12(3), 461–474.

    Article  Google Scholar 

  6. Salt, J. E., & Nguyen, H. H. (2008). Performance prediction for energy detection of unknown signals. IEEE Transactions on Vehicular Technology, 57(6), 3900–3904.

    Article  Google Scholar 

  7. Hauptschein, A., & Knapp, T. (1979). Maximum likelihood energy detection of mary orthogonal signals. IEEE Transactions on Aerospace and Electronic Systems, AES–15(2), 292–299.

    Article  Google Scholar 

  8. Zhao, Y. Q., Li, S. Y., Zhao, N., & Wu, Z. L. (2010). A novel energy detection algorithm for spectrum sensing in cognitive radio. Information Technology Journal, 9(8), 1659–1664.

    Article  Google Scholar 

  9. Eftekhari, A., Romberg, J., & Wakin, M. B. (2013). Matched filtering from limited frequency samples. IEEE Transactions on Information Theory, 59(6), 3475–3496.

    Article  MathSciNet  Google Scholar 

  10. Cai, Z. P., Wang, Z. J., & Zheng, K. (2011). A distributed TCAM coprocessor architecture for integrated longest prefix matching, policy filtering, and content filtering. IEEE Transactions on Computers, 62(3), 417–427.

    Article  MathSciNet  Google Scholar 

  11. Bhargavi, D., & Murthy, C. R. (2010, June). Performance comparison of energy, matched-filter and cyclostationarity-based spectrum sensing. In 2010 IEEE eleventh international workshop signal processing advances in wireless communications (SPAWC) (Vol. 1(5), pp. 20–23).

  12. Riba, J., Font-Segura, J., Villares, J., & Vazquez, G. (2014). Frequency-domain GLR detection of a second-order cyclostationary signal over fading channels. IEEE Transactions on Signal Processing, 62(8), 1899–1912.

    Article  MathSciNet  Google Scholar 

  13. Derakhshani, M., Le-ngoc, T., & Nasiri-kenari, M. (2011). Efficient cooperative cyclostationary spectrum sensing in cognitive radios at low SNR regimes. IEEE Transactions on Wireless Communications, 10(11), 3754–3764.

    Article  Google Scholar 

  14. Kyouwoong, K., Akbar, I. A., Bae, K. K., Um, J. S., Spooner, C. M., & Reed, J. H. (2007, April). Cyclostationary approaches to signal detection and classification in cognitive radio. In 2007 IEEE 2nd international symposium new frontiers in dynamic spectrum access networks (DySPAN) (pp. 212–215).

  15. Adoum, B. A., & Jeoti, V. (2010, May). Cyclostationary feature based multiresolution spectrum sensing approach for DVB-T and wireless microphone signals. In 2010 international conference computer and communication engineering (ICCCE) (pp. 1–6).

  16. Dandawate, A. V., & Giannakis, G. B. (1994). Statistical tests for presence of cyclostationarity. IEEE Transactions Signal Processing, 42(9), 2355–2369.

    Article  Google Scholar 

  17. Ciblat, P., Loubaton, P., Serpedin, E., et al. (2002). Asymptotic analysis of blind cyclic correlation-based symbol-rate estimators. IEEE Transactions Information Theory, 48(7), 1922–1934.

    Article  MathSciNet  Google Scholar 

  18. Ciblat, P., Loubaton, P., Serpedin, E., & Giannakis, G. B. (2002). Asymptotic analysis of blind cyclic correlation-based symbol-rate estimators. IEEE Transactions Information Theory, 48(7), 1922–1934.

    Article  MathSciNet  Google Scholar 

  19. Hsue, S. Z., & Soliman, S. S. (1990). Automatic modulation classification using zero crossing. IEE Proceedings Radar Signal Processing, 137(6), 459–465.

    Article  Google Scholar 

  20. Schreyogg, C., Kittel, K., Kressel, U., & Reichert, J. (1997, February). Robust classification of modulation types using spectral features applied to HMM. In Proceedings of IEEE MILCOM (pp. 1377–1381), Monterey, CA.

  21. Ho, K. C., Prokopiw, W., & Chan, Y. T. (2000). Modulation identification of digital signals by the wavelet transform. Proceedings of Institute of Electrical Engineering, Radar, Sonar and Navigation, 147(4), 169–176.

    Article  Google Scholar 

  22. Kim, K., Akbar, I. A., Bae, K. K., Um, J.-S., Spooner, C. M., & Reed, J. H. (2007, April). Cyclostationary approaches to signal detection and classification in cognitive radio. In Proceedings of IEEE DySpan (pp. 212–215), Dublin, Ireland.

  23. Ramkumar, B. (2009). Automatic modulation classification for cognitive radios using cyclic feature detection. IEEE Circuits and Systems Magazine, 9(2), 27–45.

    Article  Google Scholar 

  24. Tian, Z., & Giannakis, G. B. (2007, April). Compressed sensing for wideband cognitive radios. In IEEE acoustics, speech and signal processing (ICASSP) 2007.

  25. Leus, G., & Tian, Z. (2011, December). Recovering second-order statistics from compressive measurements. In IEEE computational advances in multi-sensor adaptive processing (CAMSAP) 2011.

  26. Golub, G. H., & Loan, C. F. V. (1996). Matrix computations (3rd ed.). Baltimore: The Johns Hopkins University Press.

    MATH  Google Scholar 

  27. Tian, Z., Tafesse, Y., & Sadler, B. M. (2012). Cyclic feature detection with sub-Nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 6(1), 58–69.

    Article  Google Scholar 

  28. Sabat, S. L., Srinu, S., Raveendranadh, A., & Udgata, S. K. (2012, January). Spectrum sensing based on entropy estimation using cyclostationary features for Cognitive radio. In Communication systems and networks (COMSNETS) (pp. 1–6).

  29. Zhang, Y., Zhang, Q., & Wu, S. (2010). Entropy-based robust spectrum sensing in cognitive radio. IET Communications, 4(4), 428–436.

    Article  Google Scholar 

  30. Tropp, J. A., Laska, J. N., Duarte, M. F., Romberg, J. K., & Baraniuk, R. G. (2010). Beyond Nyquist: Efficient sampling of sparse bandlimited signals. IEEE Transactions Information Theory, 56(1), 520–544.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61201152), the Fundamental Research Funds for the Central Universities (2014ZD03-02), the National Natural Science Foundation of China (61227801), the National High-Tech R&D Program (863 Program 2015AA01A705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qixun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhang, Q., Fu, X. et al. Joint Rapid Spectrum Scanning and Signal Feature Recognition Scheme Using Compressed Sensing and Cyclostationary Technologies. Wireless Pers Commun 97, 3901–3920 (2017). https://doi.org/10.1007/s11277-017-4706-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4706-1

Keywords

Navigation