Skip to main content
Log in

Performance Evaluation of Cognitive Radio VoIP Users in Fading Environment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper we investigate three channel allocation algorithms for multi-channel cognitive radio networks: SNR-based allocation (SA), queue-based allocation (QA), and queue-based SNR-aware allocation (QSA). The efficiency of the proposed algorithms is investigated for VoIP cognitive radio users (CRs). The resource allocation in the SA and QA schemes is performed based on the channel quality status seen by each CR and its queue length, respectively. The channel allocation in the QSA scheme is based on both the queue length and the SNR status. The mean packet loss rate (PLR) as the main quality-of-service (QoS) parameter is scrutinized for each algorithm. Novel analytical structures together with new analyses are developed, by which the level of provisioning QoS of VoIP traffic in each of the proposed algorithms can be evaluated. Numerical results and comparisons are also presented. In particular, the QSA algorithm is shown to present the best QoS level and yield the least PLR among the three allocation schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Spectrum policy task force. Rep. OET Docket No. 02-135 (2002)

  2. Akyildiz, I. F., Lee, W. Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  Google Scholar 

  3. Alshamrani, A., Shen, X., & Xie, L. L. (2011). QoS provisioning for heterogeneous services in cooperative cognitive radio networks. IEEE Journal on Selected Areas in Communications, 29(4), 819–830. doi:10.1109/JSAC.2011.110413.

    Article  Google Scholar 

  4. Cai, L., Liu, Y., Shen, X., Mark, J. W., & Zhao, D. (2010). Distributed QoS-aware MAC for multimedia over cognitive radio networks. In Proceedings of IEEE GLOBECOM (pp. 1–5 ). doi:10.1109/GLOCOM.2010.5683743.

  5. Doost-Mohammady, R., Naderi, M., & Chowdhury, K. (2014). Spectrum allocation and QoS provisioning framework for cognitive radio with heterogeneous service classes. IEEE Transactions on Wireless Communications, 13(7), 3938–3950. doi:10.1109/TWC.2014.2319307.

    Article  Google Scholar 

  6. Feng, S., Liang, Z., & Zhao, D. (2010). Providing telemedicine services in an infrastructure-based cognitive radio network. IEEE Wireless Communications, 17(1), 96–103. doi:10.1109/MWC.2010.5416356.

    Article  Google Scholar 

  7. Feng, S., & Zhao, D. (2010). Supporting real-time CBR traffic in a cognitive radio sensor network. In Proceedings of IEEE WCN (pp. 1–6). doi:10.1109/WCNC.2010.5506276.

  8. Gross, D., & Harris, C. M. (1985). Fundamentals of queueing theory (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  9. Gunawardena, S., & Zhuang, W. (2010). Voice capacity of cognitive radio networks for both centralized and distributed channel access control. In Proceedings of IEEE GLOBECOM (pp. 1–5). doi:10.1109/GLOCOM.2010.5683073.

  10. Homayounzadeh, A., & Mahdavi, M. (2015). Quality of service provisioning for real-time traffic in cognitive radio networks. IEEE Communications Letters, 19(3), 467–470. doi:10.1109/LCOMM.2014.2386313.

    Article  Google Scholar 

  11. Homayounzadeh, A., & Mahdavi, M. (2016). Improving voice-service support in cognitive radio networks. ETRI Journal, 38(3), 444–454.

    Google Scholar 

  12. Jha, S., Phuyal, U., Rashid, M., & Bhargava, V. (2011). Design of OMC-MAC: An opportunistic multi-channel MAC with QoS provisioning for distributed cognitive radio networks. IEEE Transactions on Wireless Communications, 10(10), 3414–3425. doi:10.1109/TWC.2011.072511.102196.

    Article  Google Scholar 

  13. Le, L. B., & Hossain, E. (2008). Resource allocation for spectrum underlay in cognitive radio networks. IEEE Transactions on Wireless Communications, 7(12), 5306–5315. doi:10.1109/T-WC.2008.070890.

    Article  Google Scholar 

  14. Liang, Z., & Zhao, D. (2010). Quality of service performance of a cognitive radio sensor network. In Proceedings of IEEE ICC (pp. 1–5). doi:10.1109/ICC.2010.5502787.

  15. Lien, S. Y., Lin, Y. Y., & Chen, K. C. (2011). Cognitive and game-theoretical radio resource management for autonomous femtocells with QoS guarantees. IEEE Transactions on Wireless Communications, 10(7), 2196–2206. doi:10.1109/TWC.2011.060711.100737.

    Article  Google Scholar 

  16. Liu, Q., Zhou, S., & Giannakis, G. (2005). Queuing with adaptive modulation and coding over wireless links: Cross-layer analysis and design. IEEE Transactions on Wireless Communications, 4(3), 1142–1153. doi:10.1109/TWC.2005.847005.

    Article  Google Scholar 

  17. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications Magazine, 6(4), 13–18. doi:10.1109/98.788210.

    Article  Google Scholar 

  18. Rashid, M., Hossain, M., Hossain, E., & Bhargava, V. (2009). Opportunistic spectrum scheduling for multiuser cognitive radio: A queueing analysis. IEEE Transactions on Wireless Communications, 8(10), 5259–5269. doi:10.1109/TWC.2009.081536.

    Article  Google Scholar 

  19. Su, H., & Zhang, X. (2008). Cross-layer based opportunistic MAC protocols for QoS provisionings over cognitive radio wireless networks. IEEE Journal on Selected Areas in Communications, 26(1), 118–129. doi:10.1109/JSAC.2008.080111.

    Article  Google Scholar 

  20. Tan, X., Zhang, H., Chen, Q., & Hu, J. (2014). Opportunistic channel selection based on time series prediction in cognitive radio networks. Transactions on Emerging Telecommunications Technologies, 25(11), 1126–1136. doi:10.1002/ett.2664.

    Article  Google Scholar 

  21. Tumuluru, V., Wang, P., & Niyato, D. (2011). A novel spectrum-scheduling scheme for multichannel cognitive radio network and performance analysis. IEEE Transactions on Vehicular Technology, 60(4), 1849–1858. doi:10.1109/TVT.2011.2114682.

    Article  Google Scholar 

  22. Wang, B., Zhao, D., & Cai, J. (2011). Joint connection admission control and packet scheduling in a cognitive radio network with spectrum underlay. IEEE Transactions on Wireless Communications, 10(11), 3852–3863. doi:10.1109/TWC.2011.091411.110023.

    Article  Google Scholar 

  23. Wang, H. S., & Moayeri, N. (1995). Finite-state Markov channel—A useful model for radio communication channels. IEEE Transactions on Vehicular Technology, 44(1), 163–171. doi:10.1109/25.350282.

    Article  Google Scholar 

  24. Wang, P., Niyato, D., & Jiang, H. (2010). Voice-service capacity analysis for cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(4), 1779–1790. doi:10.1109/TVT.2010.2041017.

    Article  Google Scholar 

  25. Yao, Y., Popescu, A., & Popescu, A. (2014). On prioritized opportunistic spectrum access in cognitive radio cellular networks. Transactions on Emerging Telecommunications Technologies,. doi:10.1002/ett.2866.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Mahdavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayat, A., Mahdavi, M. & Aïssa, S. Performance Evaluation of Cognitive Radio VoIP Users in Fading Environment. Wireless Pers Commun 97, 3951–3977 (2017). https://doi.org/10.1007/s11277-017-4709-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4709-y

Keywords

Navigation