Skip to main content
Log in

Performance Analysis for a Wireless Sensor Network of Star Topology with Random Nodes Deployment

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

A wireless sensor network is applied for detecting information, by nodes, then generates and transfers the packets to the clustering head for further transmission. In practice, due to the influence of environmental factors, traffic loads of nodes and barrier, a node may fail to detect the information which occurs within its sensing area. Thus, the redundant deployment is often conducted. There are some frequent questions need to be considered when deploying the WSN: (1) how many nodes are required for obtaining a confident coverage of the area; (2) how well does the WSN perform as time goes by, because it is an energy consumption technique; (3) when is the best opportunity to reallocate the nodes. To answer the above questions, we conduct this research. We use \(k\)-out-of-\(n\) model to calculate the \(k\)-coverage probability, which determines the minimal number of nodes that are needed to be deployed in the monitored area. We formulate the node availability and WSN availability with the assumption that the information arrival is a Poisson process. By applying the age-based replacement model, we obtain the optimal reallocation interval with lowest long run expected cost rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. AboElFotoh, H. M. F., ElMallah, E. S., & Hassanein, H. S. (2006). On the reliability of wireless sensor networks. In: 2006 IEEE International Conference on Communications (Vol 1–12, pp. 3455–3460). New York: IEEE.

  2. Adulyasas, A., Sun, Z. L., & Wang, N. (2015). Connected coverage optimization for sensor scheduling in wireless sensor networks. IEEE Sensors Journal, 15, 3877–3892.

    Article  Google Scholar 

  3. Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: A survey. Computer Networks, 38, 393–422.

    Article  Google Scholar 

  4. Akyildiz, I. F., Wang, X. D., & Wang, W. L. (2005). Wireless mesh networks: A survey. Computer Networks-The International Journal of Computer and Telecommunications Networking, 47, 445–487.

    MATH  Google Scholar 

  5. Azari, A., Harsini, J. S., & Lahouti, F. (2015). Performance analysis of ad-hoc routing in heterogeneous clustered multi-hop wireless networks. Computer Networks, 80, 143–154.

    Article  Google Scholar 

  6. Birjandi, P. A., Kulik, L., & Tanin, E. (2013). K-Coverage in regular deterministic sensor deployments. New York: IEEE.

  7. Bredin, J. L., Demaine, E. D., Hajiaghayi, M. T., & Rus, D. (2010). Deploying sensor networks with guaranteed fault tolerance. IEEE-Acm Transactions on Networking, 18, 216–228.

    Article  Google Scholar 

  8. Cai, J., Song, X., Wang, J., & Gu, M. (2014). Reliability analysis for a data flow in event-driven wireless sensor networks. Wireless Personal Communications, 78, 151–169.

    Article  Google Scholar 

  9. Chang, G. J., Cui, L., & Hwang, F. K. (1999). Reliabilities for (n, f, k) systems. Statistics & Probability Letters, 43, 237–242.

    Article  MathSciNet  Google Scholar 

  10. Cheng, B.-C., Yeh, H.-H., & Hsu, P.-H. (2011). Schedulability analysis for hard network lifetime wireless sensor networks with high energy first clustering. IEEE Transactions on Reliability, 60, 675–688.

    Article  Google Scholar 

  11. Coit, D. W., Chatwattanasiri, N., Wattanapongsakorn, N., & Konak, A. (2015). Dynamic k-out-of-n system reliability with component partnership. Reliability Engineering & System Safety, 138, 82–92.

    Article  Google Scholar 

  12. Cui, L. R., Lin, C., & Du, S. J. (2015). m-consecutive-k, l-Out-of-n systems. IEEE Transactions on Reliability, 64, 386–393.

    Article  Google Scholar 

  13. Fontanelli, D., & Petri, D. (2009). An algorithm for WSN clock synchronization: Uncertainty and convergence rate trade off. New York: IEEE.

  14. Gupta, H. P., Rao, S. V., & Venkatesh, T. (2013). Analysis of the redundancy in coverage of a heterogeneous wireless sensor network. In: 2013 IEEE International Conference on Communications (ICC) (pp. 1904–1909).

  15. He, T., Krishnamurthy, S., Luo, L., Yan, T., Gu, L., Stoleru, R., et al. (2006). VigilNet: An integrated sensor network system for energy-efficient surveillance. ACM Transactions on Sensor Networks (TOSN), 2, 1–38.

    Article  Google Scholar 

  16. Ho, D. T., & Shimamoto, S. (2011). Highly reliable communication protocol for WSN–UAV system employing TDMA and PFS scheme. In: 2011 IEEE Globecom Workshops (Gc Wkshps) (pp. 1320–1324).

  17. Michelusi, N., & Zorzi, M. (2015). Optimal adaptive random multiaccess in energy harvesting wireless sensor networks. IEEE Transactions on Communications, 63, 1355–1372.

    Google Scholar 

  18. Sagar, A. K., & Lobiyal, D. K. (2015). Probabilistic intrusion detection in randomly deployed wireless sensor networks. Wireless Personal Communications, 84, 1017–1037.

    Article  Google Scholar 

  19. Sangwan, A., & Singh, R. (2015). Survey on coverage problems in wireless sensor networks. Wireless Personal Communications, 80, 1475–1500.

    Article  Google Scholar 

  20. Selavo, L., Wood, A., Cao, Q., Sookoor, T., Liu, H., Srinivasan, A., et al. (2007). Luster: Wireless sensor network for environmental research. In: Proceedings of the 5th international conference on Embedded networked sensor systems (pp. 103–116).

  21. Shazly, M. H., Elmallah, E. S., & AboElFotoh, H. M. F. (2010). A three-state node reliability model for sensor networks. In: 2010 IEEE Global Telecommunications Conference Globecom. Miami: IEEE.

  22. Stankovic, J. A., Wood, A. D., & He T. (2011). Realistic applications for wireless sensor networks. In: Theoretical Aspects of Distributed Computing in Sensor Networks (pp. 835–863). Springer.

  23. Sun, K., Ning, P., & Wang, C. (2005). Fault-tolerant cluster-wise clock synchronization for wireless sensor networks. IEEE Transactions on Dependable and Secure Computing, 2, 177–189.

    Article  Google Scholar 

  24. Vasseur, J. P., Bertrand, P., Aboussouan, B., Gnoske, E., Pister, K., Culler, D., Acra, R., & Huotari, A. (2010). A survey of several low power Link layers for IP smart objects [white paper] # 6. In: International Protocol for Smart Objects (IPSO) Alliance.

  25. Vicaire, P., He, T., Cao, Q., Yan, T., Zhou, G., Gu, L., et al. (2009). Achieving long-term surveillance in vigilnet. ACM Transactions on Sensor Networks (TOSN), 5, 9.

    Article  Google Scholar 

  26. Wang, J.-B., Wang, J.-Y., Chen, M., Zhao, X. B., Si, S.-B., Cui, L. R., et al. (2013). Reliability analysis for a data flow in event-driven wireless sensor networks using a multiple sending transmission approach. EURASIP Journal on Wireless Communications and Networking, 2013, 277. doi:10.1186/1687-1499-2013-277.

    Article  Google Scholar 

  27. Wang, N., & Shen, X. L. (2009). Research on WSN nodes location technology in coal mine. Los Alamitos: IEEE Computer Society.

    Google Scholar 

  28. Wood, A. D., Stankovic, J., Virone, G., Selavo, L., He, Z., Cao, Q., et al. (2008). Context-aware wireless sensor networks for assisted living and residential monitoring. IEEE Network, 22, 26–33.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by NSF of China under Grant 71371031 and by China Scholarship Council under Grant 201406030097.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cong Lin.

Appendix

Appendix

Proof

  1. (1)

    \(R_{c} - R_{s,i} < u_{i} \le \sqrt {R_{c}^{2} - R_{s,i}^{2} }\)

As is shown in Fig. 12, we have the equation \(R_{c}^{2} - (u_{i} + z)^{2} = R_{s,i}^{2} - z^{2}\).

Fig. 12
figure 12

\(R_{c} - R_{s,i} < u_{i} \le \sqrt {R_{c}^{2} - R_{s,i}^{2} }\)

Therefore, \(\left\{ \begin{aligned} {\text{z = }}\frac{{R_{c}^{2} - R_{s,i}^{2} - u_{i}^{2} }}{{2u_{i} }}, \hfill \\ y = \frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2u_{i} }}. \hfill \\ \end{aligned} \right.\)

Further, we have \(\left\{ \begin{aligned} \theta = \arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{s,i} u_{i} }}), \hfill \\ \alpha = \arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{c} u_{i} }}). \hfill \\ \end{aligned} \right.\)

The area of \(S_{2}\) is calculated as \(S_{ 2} = \theta R_{s,i}^{2} + \alpha R_{c}^{2} + u_{i} y\), so

$$\begin{aligned} S_{ 2} & = R_{s,i}^{2} \arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{s,i} u_{i} }}) \hfill \\ &\quad + R_{c}^{2} \arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{c} u_{i} }}) \hfill \\ &\quad + \frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{2} \hfill \\ \end{aligned}$$

Finally, we have \(P_{i} ({\text{B|C}}_{2 - (1)} ) = \int_{{R_{c} - R_{s,i} }}^{{\sqrt {R_{c}^{2} - R_{s,i}^{2} } }} {\frac{{S_{2} }}{{S_{0} }}du_{i} }\).

  1. (2)

    \(\sqrt {R_{c}^{2} - R_{s,i}^{2} } < u_{i} \le R_{c}\)

As is shown in Fig. 13, we have the equation \(R_{c}^{2} - (u_{i} - z)^{2} = R_{s,i}^{2} - z^{2}\).

Fig. 13
figure 13

\(\sqrt {R_{c}^{2} - R_{s,i}^{2} } < u_{i} \le R_{c}\)

Therefore, \(\left\{ \begin{aligned} z = \frac{{R_{s,i}^{2} + u_{i}^{2} - R_{c}^{2} }}{{2u_{i} }}, \hfill \\ y = \frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2u_{i} }}. \hfill \\ \end{aligned} \right.\)

Further, we have \(\left\{ \begin{aligned} \theta = \arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{s,i} u_{i} }}), \hfill \\ \alpha = \arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{c} u_{i} }}). \hfill \\ \end{aligned} \right.\)

The area of \(S_{3}\) is calculated as \(S_{3} = \theta R_{s,i}^{2} + \alpha R_{c}^{2} + u_{i} y\), so

$$\begin{aligned} S_{3} & = R_{s,i}^{2} \arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{s,i} u_{i} }}) \hfill \\ & \quad + R_{c}^{2} \arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{c} u_{i} }}) \hfill \\ & \quad + \frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{2} \hfill \\ \end{aligned}$$

Thus, we have \(P_{i} ({\text{B|C}}_{2 - (2)} ) = \int_{{\sqrt {R_{c}^{2} - R_{s}^{2} } }}^{{R_{c} }} {\frac{{S_{3} }}{{S_{0} }}du_{i} }\).

Since \(S_{2} = S_{3}\), finally, we have \(P_{i} ({\text{B|C}}_{2} ) = P_{i} ({\text{B|C}}_{2 - (1)} ) + P_{i} ({\text{B|C}}_{2 - (2)} )\).

$$\begin{aligned} P_{i} ({\text{B|C}}_{2} ) &= \frac{{R_{s,i}^{2} }}{{\pi R_{c}^{2} }}\arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c,i} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{s,i} u_{i} }}) \hfill \\ & \quad + \frac{1}{\pi }\arcsin (\frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c,i} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2R_{c} u_{i} }}) \hfill \\ & \quad - \frac{{\sqrt {(R_{c} + R_{s,i} + u_{i} )(R_{s,i} + u_{i} - R_{c,i} )(R_{c} - R_{s,i} + u_{i} )(R_{c} + R_{s,i} - u_{i} )} }}{{2\pi R_{c}^{2} }} \hfill \\ \end{aligned}$$

The proof is completed.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Cui, L., Coit, D.W. et al. Performance Analysis for a Wireless Sensor Network of Star Topology with Random Nodes Deployment. Wireless Pers Commun 97, 3993–4013 (2017). https://doi.org/10.1007/s11277-017-4711-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4711-4

Keywords

Navigation