Skip to main content

Advertisement

Log in

Precise Indoor Positioning Using UWB: A Review of Methods, Algorithms and Implementations

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The demand and growth of indoor positioning has increased rapidly in the past few years for a diverse range of applications. Various innovative techniques and technologies have been introduced but precise and reliable indoor positioning still remains a challenging task due to dependence on a large number of factors and limitations of the technologies. Positioning technologies based on radio frequency (RF) have many advantages over the technologies utilizing ultrasonic, optical and infrared devices. Both narrowband and wideband RF systems have been implemented for short range indoor positioning/real-time locating systems. Ultra wideband (UWB) technology has emerged as a viable candidate for precise indoor positioning due its unique characteristics. This article presents a comparison of UWB and narrowband RF technologies in terms of modulation, throughput, transmission time, energy efficiency, multipath resolving capability and interference. Secondly, methods for measurement of the positioning parameters are discussed based on a generalized measurement model and, in addition, widely used position estimation algorithms are surveyed. Finally, the article provides practical UWB positioning systems and state-of-the-art implementations. We believe that the review presented in this article provides a structured overview and comparison of the positioning methods, algorithms and implementations in the field of precise UWB indoor positioning, and will be helpful for practitioners as well as for researchers to keep abreast of the recent developments in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Coding efficiency is the ratio of data size to the number of bytes to transmit.

References

  1. Xiao, J., Liu, Z., Yang, Y., Liu, D., & Han, X. (2011). Comparison and analysis of indoor wireless positioning techniques. In 2011 International conference on computer science and service system (CSSS) (pp. 293–296). IEEE.

  2. Mautz, R., & Tilch, S. (2011). Survey of optical indoor positioning systems. In IPIN (pp. 1–7).

  3. Want, R., Hopper, A., Falcao, V., & Gibbons, J. (1992). The active badge location system. ACM Transactions on Information Systems (TOIS), 10(1), 91–102.

    Article  Google Scholar 

  4. Challamel, R., Tom, P., Harmer, D., & Beauregard, S. (2008). Performance assessment of indoor location technologies. In 2008 IEEE/ION position, location and navigation symposium (pp. 624–632). IEEE.

  5. Mitilineos, S. A., Kyriazanos, D. M., Segou, O. E., Goufas, J. N., & Thomopoulos, S. C. (2010). Indoor localisation with wireless sensor networks. Progress in Electromagnetics Research, 109, 441–474.

    Article  Google Scholar 

  6. Gezici, S., Tian, Z., Giannakis, G. B., Kobayashi, H., Molisch, A. F., Poor, H. V., et al. (2005). Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks. IEEE Signal Processing Magazine, 22(4), 70–84.

    Article  Google Scholar 

  7. Fontana, R. J. (2004). Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Transactions on Microwave Theory Techniques, 52(9), 2087–2104.

    Article  Google Scholar 

  8. Molisch, A. F., Balakrishnan, K., Cassioli, D., Chong, C. C., Emami, S., Fort, A., & Siwiak, K. (2005). A comprehensive model for ultrawideband propagation channels. In 2005. GLOBECOM’05. IEEE global telecommunications conference (Vol. 6, p. 6-pp). IEEE.

  9. Win, M. Z., & Scholtz, R. A. (1998). Impulse radio: How it works. IEEE communications Letters, 2(2), 36–38.

    Article  Google Scholar 

  10. Ingram, S. J., Harmer, D., & Quinlan, M. (2004). Ultrawideband indoor positioning systems and their use in emergencies. In 2004. PLANS 2004 position location and navigation symposium (pp. 706–715). IEEE.

  11. Guvenc, I., Gezici, S., & Sahinoglu, Z. (2008). Ultra-wideband range estimation: Theoretical limits and practical algorithms. In 2008. ICUWB 2008. IEEE international conference on ultra-wideband (Vol. 3, pp. 93–96). IEEE.

  12. Caffery, J. J, Jr. (2006). Wireless location in CDMA cellular radio systems (Vol. 535). Berlin: Springer.

    Google Scholar 

  13. Farid, Z., Nordin, R., & Ismail, M. (2013). Recent advances in wireless indoor localization techniques and system. Journal of Computer Networks and Communications, 2013, 1–12.

  14. Zhang, D., Xia, F., Yang, Z., Yao, L., & Zhao, W. (2010). Localization technologies for indoor human tracking. In 2010 5th International conference on future information technology (FutureTech) (pp. 1–6). IEEE.

  15. Sklar, B. (1997). Rayleigh fading channels in mobile digital communication systems. I. Characterization. IEEE Communications Magazine, 35(9), 136–146.

    Article  Google Scholar 

  16. Ghavami, M., Michael, L. B., & Kohno, R. (2004). Front matter. Hoboken: Wiley.

    Book  Google Scholar 

  17. Di Benedetto, M. G. (2006). UWB communication systems: A comprehensive overview (Vol. 5). Cairo: Hindawi Publishing Corporation.

    Book  Google Scholar 

  18. Cover, T. M., & Thomas, J. A. (2012). Elements of information theory. Hoboken: Wiley.

    MATH  Google Scholar 

  19. Park, C., & Rappaport, T. S. (2007). Short-range wireless communications for next-generation networks: UWB, 60 GHz millimeter-wave WPAN, and ZigBee. IEEE wireless communications, 14(4), 70–78.

    Article  Google Scholar 

  20. Foerster, J., Green, E., Somayazulu, S., Leeper, D., Intel Architecture Labs, Intel Architecture Labs, Intel Corp., & Intel Corp. (2001). Ultra-wideband technology for short-or medium-range wireless communications. Intel Technology Journal, 2, 2001.

  21. Lee, J. S., Su, Y. W., & Shen, C. C. (2007). A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In 2007. IECON 2007. 33rd annual conference of the IEEE industrial electronics society (pp. 46–51). IEEE.

  22. Telatar, I. E., & Tse, D. N. (2000). Capacity and mutual information of wideband multipath fading channels. IEEE Transactions on Information Theory, 46(4), 1384–1400.

    Article  MathSciNet  Google Scholar 

  23. Ren, Q., & Liang, Q. (2008). Throughput and energy-efficiency-aware protocol for ultrawideband communication in wireless sensor networks: A cross-layer approach. IEEE transactions on mobile computing, 7(6), 805–816.

    Article  Google Scholar 

  24. Karl, H., & Willig, A. (2007). Protocols and architectures for wireless sensor networks. Hoboken: Wiley.

    Google Scholar 

  25. Barras, D., Ellinger, F., & Jckel, H. (2002). A comparison between ultrawideband and narrowband transceivers. Proceedings TRLabs/IEEE Wireless, 2002, 211–214.

    Google Scholar 

  26. Sheng, H., Orlik, P., Haimovich, A. M., Cimini Jr, L. J., & Zhang, J. (2003). On the spectral and power requirements for ultra-wideband transmission. In 2003. ICC’03. IEEE international conference on communications (Vol. 1, pp. 738–742). IEEE.

  27. Masood, R. F. (2013). Adaptive Modulation. (QPSK, QAM).

  28. Zhang, C., Kuhn, M., Merkl, B., Fathy, A. E., & Mahfouz, M. (2006). Accurate UWB indoor localization system utilizing time difference of arrival approach. In 2006 IEEE radio and wireless symposium.

  29. Liu, H., Darabi, H., Banerjee, P., & Liu, J. (2007). Survey of wireless indoor positioning techniques and systems. IEEE Transactions on Systems Man, and Cybernetics, Part C: Applications and Reviews, 37(6), 1067–1080.

    Article  Google Scholar 

  30. Du, K. L., & Swamy, M. N. (2010). Wireless communication systems: From RF subsystems to 4G enabling technologies. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  31. Ramirez-Mireles, F., & Scholtz, R. A. (1998). Multiple-access with time hopping and block waveform PPM modulation. In 1998. ICC 98. Conference record. 1998 IEEE international conference on communications (Vol. 2, pp. 775–779). IEEE.

  32. Neelakanta, P. S., & Dighe, H. (2003, November). Robust factory wireless communications: A performance appraisal of the Bluetooth and the ZigBee colocated on an industrial floor. In 2003. IECON’03. The 29th annual conference of the IEEE industrial electronics society (Vol. 3, pp. 2381–2386). IEEE.

  33. Sikora, A., & Groza, V. F. (2005). Coexistence of IEEE802. 15.4 with other Systems in the 2.4 GHz-ISM-Band. In 2005. IMTC 2005. Proceedings of the IEEE instrumentation and measurement technology conference (Vol. 3, pp. 1786–1791). IEEE.

  34. Miller, L. E. (2003). Why UWB? A review of ultrawideband technology. National Institute of Standards and Technology. DARPA, 1–72

  35. Al Nuaimi, K., & Kamel, H. (2011). A survey of indoor positioning systems and algorithms. In 2011 International conference on innovations in information technology (IIT) (pp. 185–190). IEEE.

  36. Althaus, F., Troesch, F., & Wittneben, A. (2005). UWB geo-regioning in rich multipath environment. In IEEE vehicular technology conference (Vol. 62, No. 2, p. 1001). IEEE; 1999.

  37. Nerguizian, C., Despins, C., & Affes, S. (2001). A framework for indoor geolocation using an intelligent system. In 3rd IEEE Workshop on WLANs (pp. 1–38).

  38. Nerguizian, C., Despins, C., & Affs, S. (2006). Geolocation in mines with an impulse response fingerprinting technique and neural networks. IEEE Transactions on Wireless Communications, 5(3), 603–611.

    Article  Google Scholar 

  39. Triki, M., Slock, D., Rigal, V., & Franois, P. (2006). Mobile terminal positioning via power delay profile fingerprinting: Reproducible validation simulations. In 2006. VTC-2006 Fall. 2006 IEEE 64th vehicular technology conference (pp. 1–5). IEEE.

  40. Gezici, S., & Poor, H. V. (2009). Position estimation via ultra-wide-band signals. Proceedings of the IEEE, 97(2), 386–403.

    Article  Google Scholar 

  41. Xu, J., Ma, M., & Law, C. L. (2008). Position estimation using ultra-wideband time difference of arrival measurements. IET Science, Measurement and Technology, 2(1), 53–58.

    Article  Google Scholar 

  42. Chang, C., & Sahai, A. (2004). Estimation bounds for localization. In 2004. IEEE SECON 2004. 2004 first annual IEEE communications society conference on sensor and ad hoc communications and Networks (pp. 415–424). IEEE.

  43. Qi, Y., & Kobayashi, H. (2002). Cramer-Rao lower bound for geolocation in non-line-of-sight environment. In 2002 IEEE international conference on acoustics, speech, and signal processing (ICASSP) (Vol. 3, pp. III–2473). IEEE.

  44. Sengijpta, S. K. (1995). Fundamentals of statistical signal processing: Estimation theory. Technometrics, 37(4), 465–466.

    Article  Google Scholar 

  45. Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  46. Qi, Y. (2003).Wireless geolocation in a non-line-of-sight environment (Doctoral dissertation, Ph. D. dissertation, Princeton University, Princeton, NJ).

  47. Sahinoglu, Z., & Catovic, A. (2004). A hybrid location estimation scheme (H-LES) for partially synchronized wireless sensor networks. In 2004 IEEE international conference on communications (Vol. 7, pp. 3797–3801). IEEE.

  48. Patwari, N., Ash, J. N., Kyperountas, S., Hero, A. O, III., Moses, R. L., & Correal, N. S. (2005). Locating the nodes: Cooperative localization in wireless sensor networks. IEEE Signal Processing Magazine, 22(4), 54–69.

    Article  Google Scholar 

  49. Pahlavan, K., Li, X., & Mkel, J. P. (2002). Indoor geolocation science and technology. IEEE Communications Magazine, 40(2), 112–118.

    Article  Google Scholar 

  50. Soganci, H., Gezici, S., & Poor, H. V. (2011). Accurate positioning in ultra-wideband systems. IEEE Wireless Communications, 18(2), 19–27.

    Article  Google Scholar 

  51. Mailaender, L. (2007). Comparing geo-location bounds for TOA, TDOA, and round-trip TOA. In 2007. PIMRC 2007. IEEE 18th international symposium on personal, indoor and mobile radio communications (pp. 1–5). IEEE.

  52. Xu, J., Ma, M., & Law, C. L. (2011). Performance of time-difference-of-arrival ultra wideband indoor localisation. IET Science, Measurement and Technology, 5(2), 46–53.

    Article  Google Scholar 

  53. Zekavat, R., & Buehrer, R. M. (2011). Handbook of position location: Theory, practice and advances (Vol. 27). Hoboken: Wiley.

    Book  Google Scholar 

  54. Kang, D., Namgoong, Y., Yang, S., Choi, S., & Shin, Y. (2006, February). A simple asynchronous UWB position location algorithm based on single round-trip transmission. In 2006. ICACT 2006. The 8th international conference advanced communication technology (Vol. 3, p. 4-pp). IEEE.

  55. Guven, I., & Chong, C. C. (2009). A survey on TOA based wireless localization and NLOS mitigation techniques. IEEE Communications Surveys and Tutorials, 11(3), 107–124.

    Article  Google Scholar 

  56. Kaune, R. (2012). Accuracy studies for TDOA and TOA localization. In 2012 15th International conference on information fusion (FUSION) (pp. 408–415). IEEE.

  57. Peng, R., & Sichitiu, M. L. (2006). Angle of arrival localization for wireless sensor networks. In 2006. SECON’06. 2006 3rd Annual IEEE communications cociety on sensor and ad hoc communications and networks (Vol. 1, pp. 374–382). IEEE.

  58. Laoufi, M., Heddebaut, M., Cuvelier, M., Rioult, J., & Rouvaen, J. M. (2000). Positioning emergency calls along roads and motorways using a GSM dedicated cellular radio network. In 2000. IEEE-VTS Fall VTC 2000. 52nd vehicular technology conference (Vol. 5, pp. 2039–2046). IEEE.

  59. Kaiser, T., & Zheng, F. (2010). Ultra wideband systems with MIMO. Hoboken: Wiley.

    Book  Google Scholar 

  60. Mallat, A., Louveaux, J., & Vandendorpe, L. (2007). UWB based positioning in multipath channels: CRBs for AOA and for hybrid TOA-AOA based methods. In 2007. ICC’07. IEEE international conference on communications (pp. 5775–5780). IEEE.

  61. Thomas, N. J., Cruickshank, D. G. M., & Laurenson, D. I. (2001). Performance of a TDOA-AOA hybrid mobile location system. In 2001. Second international conference on 3G mobile communication technologies (Conf. Publ. No. 477) (pp. 216–220). IET.

  62. Catovic, A., & Sahinoglu, Z. (2004). Hybrid TOA/RSS and TDOA/RSS location estimation schemes for short-range wireless networks. Bechtel Telecommunication Technical Journal (BTTJ), 2(2), 77–84.

    Google Scholar 

  63. Taponecco, L., D’Amico, A. A., & Mengali, U. (2011). Joint TOA and AOA estimation for UWB localization applications. IEEE Transactions on Wireless Communications, 10(7), 2207–2217.

    Article  Google Scholar 

  64. Schroeder, J., Galler, S., Kyamakya, K., & Jobmann, K. (2007). NLOS detection algorithms for ultra-wideband localization. In 2007. WPNC’07. 4th workshop on positioning, navigation and communication (pp. 159–166). IEEE.

  65. Wang, X., Wang, Z., & O Dea, B. (2003). A TOA-based location algorithm reducing the errors due to non-line-of-sight (NLOS) propagation. IEEE Transactions on Vehicular Technology, 52(1), 112–116.

    Article  Google Scholar 

  66. Cong, L., & Zhuang, W. (2005). Nonline-of-sight error mitigation in mobile location. IEEE Transactions on Wireless Communications, 4(2), 560–573.

    Article  Google Scholar 

  67. Chen, P. C. (1999). A non-line-of-sight error mitigation algorithm in location estimation. In 1999. WCNC. 1999 IEEE wireless communications and networking conference (pp. 316–320). IEEE.

  68. Al-Jazzar, S., & Caffery Jr, J. (2002). ML and Bayesian TOA location estimators for NLOS environments. In 2002. Proceedings. VTC 2002-Fall. 2002 IEEE 56th vehicular technology conference (Vol. 2, pp. 1178–1181). IEEE.

  69. Molisch, A. F., Balakrishnan, K., Chong, C-C, Emami, S, Fort, A, Karedal, J, Kunisch, J, Schantz, H, Schuster, U, & Siwiak, K (2004). IEEE 802.15. 4a channel model-final report, IEEE P802 (Vol. 15, pp 0662). IEEE.

  70. Molisch, A. F (2009). Ultra-wide-band propagation channels. In Proceedings of the IEEE, (Vol. 97, pp. 353–371). IEEE.

  71. Karedal, J., Wyne, S., Almers, P., Tufvesson, F., Molisch, A.F. (2007). A measurement-based statistical model for industrial ultra-wideband channels. In IEEE transactions on wireless communications, (Vol. 6). IEEE.

  72. Kannan, B and others (2004). UWB channel characterization in office environments, Document IEEE 802.15-04-0439-00-004a.

  73. Shang, F. (2013). Parameter estimation algorithms for impulse radio UWB localization systems. Dissertations McGill University, 2013

  74. Seco, F., Jimenez, A., Prieto, C., Roa, J., & Koutsou, K. (2009). A survey of mathematical methods for indoor localization. 2009. WISP 2009. IEEE international symposium on in intelligent signal processing (pp. 9–14). IEEE.

  75. Honkavirta, V., Perl, T., Ali-Lytty, S., & Pich, R. (2009, March). A comparative survey of WLAN location fingerprinting methods. In 2009. WPNC 2009. 6th workshop on positioning, navigation and communication (pp. 243–251). IEEE.

  76. Saha, S., Chaudhuri, K., Sanghi, D., & Bhagwat, P. (2003). Location determination of a mobile device using IEEE 802.11 b access point signals. In 2003. WCNC 2003. 2003 IEEE wireless communications and networking (Vol. 3, pp. 1987–1992). IEEE.

  77. Shareef, A., Zhu, Y., & Musavi, M. (2008). Localization using neural networks in wireless sensor networks. In Proceedings of the 1st international conference on MOBILe Wireless MiddleWARE, Operating Systems, and Applications (p. 4). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).

  78. Battiti, R., Le, N. T., & Villani, A. (2002). Location-aware computing: a neural network model for determining location in wireless LANs.

  79. Laoudias, C., Eliades, D. G., Kemppi, P., Panayiotou, C. G., & Polycarpou, M. M. (2009). Indoor localization using neural networks with location fingerprints. In Artificial neural Networks ICANN 2009 (pp. 954–963). Springer Berlin Heidelberg.

  80. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    MATH  Google Scholar 

  81. Fox, D., Hightower, J., Liao, L., Schulz, D., & Borriello, G. (2003). Bayesian filtering for location estimation. IEEE Pervasive Computing, 3, 24–33.

    Article  Google Scholar 

  82. Casas, R., & Cuartielles, D. (2007). Hidden issues in deploying an indoor location system. IEEE Pervasive Computing, 2, 62–69.

    Article  Google Scholar 

  83. Smith, J. O., & Abel, J. S. (1987). Closed-form least-squares source location estimation from range-difference measurements. IEEE Transactions on Acoustics, Speech and Signal Processing, 35(12), 1661–1669.

    Article  Google Scholar 

  84. Chan, Y. T., & Ho, K. C. (1994). A simple and efficient estimator for hyperbolic location. IEEE Transactions on Signal Processing, 42(8), 1905–1915.

    Article  Google Scholar 

  85. Time Domain. http://www.timedomain.com. Accessed 15 Nov 2014

  86. Beck, B., Baxley, R., & Kim, J. (2014). Real-time, anchor-free node tracking using ultrawideband range and odometry data. 2014 IEEE international conference on ultra-wideband (ICUWB), pp. 286–291.

  87. Dewberry, B., & Petroff, A. (2015). Precision navigation with ad-hoc autosurvey using ultraWideBand two-way ranging network. 12 Workshop on positioning, navigation and communication (WPNC15), pp. 1–4.

  88. DecaWave. http://www.decawave.com/technology. Accessed 15 Jan 2016

  89. DecaWave product information: DW1000. http://www.decawave.com/sites/default/files/product-pdf/dw1000-product-brief.pdf. Accessed 15 Jan 2016

  90. Fontana, R. J., Richley, E., & Barney, J. (2003). Commercialization of an ultra wideband precision asset location system. In 2003 IEEE conference on ultra wideband systems and technologies (pp. 369–373). IEEE.

  91. Zebra Technologies. http://www.zebra.com. Accessed 24 Nov 2014

  92. http://www.zebra.com/us/en/solutions/research-and-learn/success-stories/washington-hospital-center.html Accessed 7 Dec 2014

  93. http://www.zebra.com/us/en/solutions/research-and-learn/success-stories/voestapline.html. Accessed 10 Dec 2014

  94. BeSpoon. http://www.Bespoon.com. Accessed 30 Nov 2014.

  95. Steggles, P., & Gschwind, S. (2005). The Ubisense smart space platform (pp. 73–76).

  96. Gu, Y., Lo, A., & Niemegeers, I. (2009). A survey of indoor positioning systems for wireless personal networks. IEEE Communications Surveys and Tutorials, 11(1), 13–32.

    Article  Google Scholar 

  97. Shang, J., Yu, S., & Zhu, L. (2009, January). Location-aware systems for short-range wireless networks. In textit2009. CNMT 2009. International symposium on computer network and multimedia technology (pp. 1–5). IEEE.

  98. https://ubisense.net/en/information/resources/smart-factory-resources/automotive-rework Accessed on 11 May 2017.

  99. Harmer, D., Russell, M., Frazer, E., Bauge, T., Ingram, S., Schmidt, N., & Dizdarevi, V. (2008, September). EUROPCOM: emergency ultrawideband radio for positioning and communications. In 2008. ICUWB 2008. IEEE international conference on ultra-wideband (Vol. 3, pp. 85–88). IEEE.

  100. Lo, A., Xia, L., Niemegeers, I., Bauge, T., Russell, M., & Harmer, D. (2008). Europcom-An ultra-wideband (UWB)-based ad hoc network for emergency applications. In 2008. VTC spring 2008. IEEE vehicular technology conference (pp. 6–10). IEEE.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazeelat Mazhar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazhar, F., Khan, M.G. & Sällberg, B. Precise Indoor Positioning Using UWB: A Review of Methods, Algorithms and Implementations. Wireless Pers Commun 97, 4467–4491 (2017). https://doi.org/10.1007/s11277-017-4734-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4734-x

Keywords

Navigation