Skip to main content
Log in

QoS-Aware Balanced and Unbalanced Associations in Massive MIMO Enabled Heterogeneous Cellular Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

As for the massive MIMO (multiple-input and multiple-output) enabled HCNs, we design a QoS-aware association scheme to maximize the sum of achievable rates under long-term rate constraints. Since the various BSs have different transmit power and antennas, this scheme (unbalanced association) may result in an extremely imbalanced load distribution. To fully exploit the network resources, we design another scheme (balanced association) to maximize the network-wide utility that is a logarithmic function of long-term rates. In fact, these schemes can be well implemented in the practical scene since the users can introduce long-term rate constraints to guarantee their QoS requirements. Significantly, it is not the case for the most existing schemes. Considering that these formulated problems are in a nonlinear and mixed-integer form and hard to tackle, we try to develop centralized algorithms using Lagrange multiplier method and distributed algorithms using dual decomposition. Numerical results show that the balanced association significantly outperforms the unbalanced association on the load balancing gain, rate fairness, but the QoS guarantee. In addition, we also show the impacts of the number of massive antennas on the association performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ghosh, A., Mangalvedhe, N., Ratasuk, R., Mondal, B., Cudak, M., Visotsky, E., et al. (2012). Heterogeneous cellular networks: From theory to practice. IEEE Communications Magazine, 50(6), 54–64.

    Article  Google Scholar 

  2. Damnjanovic, A., Montojo, J., Wei, Y. B., Ji, T. F., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Article  Google Scholar 

  3. Andrews, J., Singh, S., Ye, Q., Lin, X., & Dhillon, H. (2014). An overview of load balancing in HetNets: Old myths and open problems. IEEE Wireless Communications, 21(2), 18–25.

    Article  Google Scholar 

  4. Liu, D., Wang, L., Chen, Y., Zhang, T., Chai, K. K., & Elkashlan, M. (2015). Distributed energy efficient fair user association in massive MIMO enabled HetNets. IEEE Communications Letters, 19(10), 1770–1773.

    Article  Google Scholar 

  5. Jo, H. S., Sang, Y. J., Xia, P., & Andrews, J. (2012). Heterogeneous cellular networks with flexible cell association: A comprehensive downlink SINR analysis. IEEE Transactions on Wireless Communications, 11(10), 3484–3495.

    Article  Google Scholar 

  6. Cho, S. R., & Choi, W. (2013). Energy-efficient repulsive cell activation for heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 870–882.

    Article  Google Scholar 

  7. Khandekar, A., Bhushan, N., Ji, T. F., & Vanghi, V. (2010). LTE-advanced: Heterogeneous networks. In Proceedings of the 2010 European Wireless Conference (EW 2010), pp. 978–982.

  8. Corroy, S., Falconetti, L., & Mathar, R. (2012). Dynamic cell association for downlink sum rate maximization in multi-cell heterogeneous networks. In Proceedings of the 2012 IEEE International Conference on in Communications (ICC), pp. 2457–2461.

  9. Ye, Q. Y., Rong, B. Y., Chen, Y. D., Al-Shalash, M., Caramanis, C., & Andrews, J. G. (2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications, 12(6), 2706–2716.

    Article  Google Scholar 

  10. Shen, K., & Yu, W. (2014). Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 32(6), 1100–1113.

    Article  Google Scholar 

  11. Chen, Y., Li, J., Lin, Z., Mao, G., & Vucetic, B. (2016). User association with unequal user priorities in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 65(9), 7374–7388.

    Article  Google Scholar 

  12. Kim, H., de-Veciana, G., Yang, X., & Venkatachalam, M. (2012). Distributed \(\alpha\)-optimal user association and cell load balancing in wireless networks. IEEE/ACM Transactions on Networking, 20(1), 177–190.

    Article  Google Scholar 

  13. Liu, D., Chen, Y., Chai, K., Zhang, T., & Elkashlan, M. (2015). Two-dimensional optimization on user association and green energy allocation for hetnets with hybrid energy sources. IEEE Transactions on Communications, 63(11), 4111–4124.

    Article  Google Scholar 

  14. Li, Q., Hu, R., Wu, G., & Qian, Y. (2012). On the optimal mobile association in heterogeneous wireless relay networks. In Proceedings of the 2011 IEEE International Conference on Computer Communications (INFOCOM 2012), pp. 1359–1367.

  15. Qian, L. P., Zhang, Y. J., Wu, Y., & Chen, J. (2013). Joint base station association and power control via Benders’ decomposition. IEEE Transactions on Wireless Communications, 12(4), 1651–1665.

    Article  Google Scholar 

  16. Xu, Y., & Mao, S. (2017). User association in massive MIMO HetNets. IEEE Systems Journal, 11(1), 7–19.

    Article  Google Scholar 

  17. Bethanabhotla, D., Bursalioglu, O., Papadopoulos, H., & Caire, G. (2016). Optimal user-cell association for massive MIMO wireless networks. IEEE Transactions on Wireless Communications, 15(3), 1835–1850.

    Article  Google Scholar 

  18. Pervaiz, H., Musavian, L., & Ni, Q. (2013). Joint user association and energy-efficient resource allocation with minimum-rate constraints in two-tier HetNets. In Proceedings of the 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications(PIMRC), pp. 1634–1639.

  19. Luo, S., Zhang, R., & Lim, T. J. (2015). Downlink and uplink energy minimization through user association and beamforming in C-RAN. IEEE Transactions on Wireless Communications, 14(1), 494–508.

    Article  Google Scholar 

  20. Zhou, T., Huang, Y., & Yang, L. (2015). User association for load balancing with QoS support in heterogeneous cellular networks. Wireless Personal Communications, 83(1), 383–397.

    Article  Google Scholar 

  21. Zhou, T., Huang, Y., Fan, L., & Yang, L. (2015). Load-aware user association with quality of service support in heterogeneous cellular networks. IET Communications, 9(4), 494–500.

    Article  Google Scholar 

  22. Boostanimehr, H., & Bhargava, V. (2015). Unified and distributed QoS-driven cell association algorithms in heterogeneous networks. IEEE Transactions on Wireless Communications, 14(3), 1650–1662.

    Article  Google Scholar 

  23. Wang, H., Ding, L., Wu, P., Pan, Z., Liu, N., & You, X. (2011). QoS-aware load balancing in 3GPP long term evolution multi-cell networks. In Proceedings of the 2011 IEEE International Conference on Communications (ICC), pp. 1–5.

  24. Li, Z., Wang, H., Pan, Z., Liu, N., & You, X. (2012). Dynamic load balancing in 3GPP LTE multi-cell fractional frequency reuse networks. In Proceedings of the 2012 IEEE Vehicular Technology Conference (VTC Fall), pp. 1–5.

  25. Tanikawa, A., & Mukai, H. (1985). A new technique for nonconvex primal-dual decomposition of a large-scale separable optimization problem. IEEE Transactions on Automatic Control, 30(2), 133–143.

    Article  MathSciNet  MATH  Google Scholar 

  26. Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University.

    Book  MATH  Google Scholar 

  27. Xiao, L., Johansson, M., & Boyd, S. (2004). Simultaneous routing and resource allocation via dual decomposition. IEEE Transactions on Wireless Communications, 52(7), 1136–1144.

    Article  Google Scholar 

  28. Boyd, S., & Mutapcic, A. (2006). Subgradient methods. http://www.stanford.edu/class/ee392o/subgrad_method_slides.pdf.

  29. Sediq, A. B., Gohary, R. H., Schoenen, R., & Yanikomeroglu, H. (2013). Optimal tradeoff between sum-rate efficiency and Jain’s fairness index in resource allocation. IEEE Transactions on Wireless Communications, 12(7), 3496–3509.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (973) under Grant Nos. 2012CB 316004, 2013CB336600, National Natural Science Foundation of China under Grant Nos. 41402290, 61462028, 81460275, 61671144, 61372101, 61221002, National High Technology Research and Development Program of China (863) under Grant Nos. 2014AA012104, Fundamental Research Funds for the Central Universities and the Open Research Fund of Key Lab of Broadband Wireless Communications and Sensor Network Technologies (NJUPT), Ministry of Education under Grant No. NYKL201502, Major Project for Natural Science Foundation of Jiangxi Province of China under Grant No. 20152ACB21011, and Funding of Supporting Excellent Young Professors for Teaching and Research in Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-Qing Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, TQ., Jiang, N., Qin, D. et al. QoS-Aware Balanced and Unbalanced Associations in Massive MIMO Enabled Heterogeneous Cellular Networks. Wireless Pers Commun 97, 5345–5366 (2017). https://doi.org/10.1007/s11277-017-4782-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4782-2

Keywords

Navigation