Skip to main content
Log in

Design Aspects of Body-Worn UWB Antenna for Body-Centric Communication: A Review

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The body-worn antenna and body-centric communication (BCC) system has received much attention over the past few years for medical healthcare monitoring applications. Such systems are gaining much concern for other applications like sports and fitness, gaming, lifestyle and entertainment. The speedy raising insalubrious environment, where the peoples have less focus towards own health and physical fitness has impelled the need of caregivers and doctors. In addition, the increase in the elderly population and numerous chronic diseases fortify the need of real-time healthcare system to monitor numerous physiological sign at their doorstep. The healthcare monitoring system is advancing through an improvement which incorporate context-aware, real-time, and continuous monitoring of several vital signs even without hospitalization. Advances in sensing, embedded technologies, and wireless transmission technologies coupled with the miniaturization have led to a keen interest in antennas that can be mounted in, on or around the human body for several applications. These applications have included wireless body area networks. This paper reviews the existing body-worn antennas for the BCC system in terms of design aspects, performance parameter characterization, human phantom modeling, and related basic numerical approaches in order to tackle the design challenges of body-worn UWB antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zimmerman, T. (1996). Personal area networks: Near field intra-body communications. MIT Media Laboratory, IBM Systems Journal, 35(3, 4), 609–617.

    Article  Google Scholar 

  2. Baber, C., et al. (1999). Ergonomics of wearable computers. Mobile Networks and Applications, 4, 15–21.

    Article  Google Scholar 

  3. Yuce, M. R., & Khan, J. (2011). Wireless body area networks: Technology, implementation and applications. Singapore: Pan Stanford Publishing. ISBN 978-981-431-6712.

    Google Scholar 

  4. Troester, G. (2005). The agenda of wearable healthcare. IMIA Yearbook of Medical Informatics (pp. 125–138). Stuttgart: Schattauer.

  5. Guha, D., & Antar, Y. M. M. (2011). Microstrip and printed antennas: New trends, techniques and applications. London: Wiley. ISBN-10 0470681926.

  6. Hall, P. S., & Hao, Y. (2006). Antennas and propagation for body centric wireless communications systems. Norwood: Artech House. ISBN-10 1-58053-493-7.

  7. Lymperis, A., & Dittmar, A. (2007). Advanced wearable health systems and applications, research and development efforts in the European Union. IEEE Engineering in Medicine and Biology Magazine, 26(3), 29–33.

    Article  Google Scholar 

  8. Hao, Y., & Foster, R. (2008). Wireless body sensor networks for health monitoring applications. Physiological Measurement, 29, R27–R56.

    Article  Google Scholar 

  9. Latre, B., Bream, B., Moerman, I., Blondia, C., & Demeester, P. (2011). A survey on wireless body area networks. Wireless Networks, 17(1), 1–18.

    Article  Google Scholar 

  10. Patel, M., & Wang, J. (2010). Applications, challenges, and prospective in emerging body area networking technologies. IEEE Wireless Communications, 17(1), 80–88.

    Article  Google Scholar 

  11. FCC. (2002). First report and order 02-48, February, 2002.

  12. Chen, Z. N., Wu, X. H., Li, H. F., Yang, N., & Chia, M. Y. W. (2004). Considerations for source pulses and antennas in UWB radio systems. IEEE Transactions on Antennas and Propagation, 52(7), 1739–1748.

    Article  Google Scholar 

  13. Wu, X. H., & Chen, Z. N. (2004). Design and optimization of UWB antennas by a powerful CAD tool: PULSE KIT. In IEEE Antennas and Propagation Society international symposium (Vol. 2, pp. 1756–1759).

  14. McLean, J. S., Foltz, H., & Sutton, R. (2004). The effect of frequency-dependent radiation pattern on UWB antenna performance. In IEEE antennas and propagation society international symposium (Vol. 3, pp. 2540–2543).

  15. Schantz, H. G. (2004). Dispersion and UWB antennas. In International workshop on ultra wideband systems, joint with conference on ultrawideband systems and technologies (pp. 161–165), May, 2004.

  16. See, T. S. P., & Chen, Z. N. (2009). Experimental characterization of UWB antennas for on-body communications. IEEE Transactions on Antennas and Propagation, 57, 866–874.

    Article  Google Scholar 

  17. Klemm, M., & Troster, G. (2006). EM energy absorption in the human body tissues due to UWB antennas. Progress in Electromagnetic Research (PIER), 62, 261–280.

    Article  Google Scholar 

  18. Klemm, M., & Troester, G. (2004). Characterization of an aperture-stacked patch antenna for ultra-wideband wearable radio systems. In 15th international conference on microwaves, radar and wireless communications (Vol. 2, pp. 395–398), May, 2004.

  19. Klemm, M., & Tröster, G. (2007). Small patch antennas for UWB wireless body area network. In F. Sabath, E. L. Mokole, U. Schenk, D. Nitsch (Eds.), Ultra-wideband, short-pulse electromagnetics 7 (pp. 417–429). New York: Springer.

    Google Scholar 

  20. Licul, S., Noronha, J. A. N., Davis, W. A., Sweeney, D. G., Anderson, C. R., & Bielawa, T. M. (2003). A parametric study of time-domain characteristics of possible UWB antenna architectures. In IEEE 58th vehicular technology conference (VTC) (Vol. 5, pp. 3110–3114).

  21. Salonen, P., Sydanheimo, L., Keskilammi, M., & Kivikoski, M. (1999). A small planar inverted-F antenna for wearable applications. In 3rd international symposium on wearable computers (pp. 95–100).

  22. Manteuffel, D., Kunish, J., Simon, W., & Geissler, M. (2004). Characterization of UWB antennas by their spatio-temporal transfer function based on FDTD simulations. In IEEE Antennas and Propagation Society international symposium (Vol. 2, pp. 1752–1755).

  23. Klemm, M., Kovcs, I. Z., Pedersen, G. F., & Troster, G. (2005). Novel small-size directional antenna for UWB WBAN/WPAN application. IEEE Transactions on Antennas and Propagation, 53(12), 3884–3896.

    Article  Google Scholar 

  24. Chahat, N., Zhadobov, M., Sauleau, R., & Ito, K. (2011). A compact UWB antenna for on-body application. IEEE Transactions on Antennas and Propagation, 59(4), 1123–1131.

    Article  Google Scholar 

  25. Alomainy, A., Sani, A., Rahman, A., Santas, J. G., & Hao, Y. (2009). Transient characteristics of wearable antennas and radio propagation channels for UWB body-centric wireless communications. IEEE Transactions on Antennas and Propagation, 57(4), 875–884.

    Article  Google Scholar 

  26. Low, X. N., Chen, Z. N., & See, T. S. P. (2009). A UWB dipole antenna with enhanced impedance and gain performance. IEEE Transactions on Antennas and Propagation, 57(10), 2559–2566.

    Google Scholar 

  27. Alomainy A., Hao Y., Parini C. G., & Hall P. S. (2005). Characterisation of printed UWB antennas for on-body communications. In IEE wideband and multi-band antennas and arrays (pp. 53–57).

  28. Alomainy, A., Hao, Y., Hu, X., Parini, C. G., & Hall, P. S. (2006). UWB on-body radio propagation and system modelling for wireless body-centric networks. IEEE Proceedings Communications, 153(1), 107–114.

    Article  Google Scholar 

  29. Alomainy, A., Hao Y., Parini C. G., & Hall P. S. (2005). On-body propagation channel characterization for UWB wireless body centric networks. In IEEE Antenna and Propagation Society international symposium (Vol. 1(B), pp. 694–697).

  30. Alomainy, A., Hao, Y., Parini, C. G., & Hall, P. S. (2005). Comparison between two different antennas for UWB on-body propagation measurements. IEEE Antennas Wireless Propagation Letter, 4, 31–34.

    Article  Google Scholar 

  31. Rahman, A., Alomainy, A., & Hao, Y. (2007). Compact body-worn coplanar waveguide fed antenna for UWB body-centric wireless communications. In IEEE 2nd European conference on antennas and propagation (EUCAP) (pp. 1–4).

  32. Qing, X., & Chen, Z. N. (2007). Antipodal Vivaldi antenna for UWB applications. In F. Sabath, E. L. Mokole, U. Schenk, D. Nitsch (Eds.), Ultra-wideband, short-pulse electromagnetics 7 (pp. 354–362). New York: Springer.

    Google Scholar 

  33. Woo, S., Baek, J., Park, H., Kim, D., & Choi, J. (2013). Design of a compact UWB diversity antenna for WBAN wrist-watch applications. In International symposium on antennas & propagation (ISAP) (pp. 1304–1306).

  34. Jolani, F. (2009). Design and optimization of compact balanced antipodal vivaldi antenna. Progress in Electromagnetics Research C, 9, 183–192.

    Article  Google Scholar 

  35. Gamio, J., Parron, J., & Soler, J. (2010). Human body effect on implantable antennas for ISM band applications: Models comparison and propagation losses study. Progress in Electromagnetics Research, 110, 437–452.

    Article  Google Scholar 

  36. Yarovoy, A. G. (2004) Antenna development for UWB impulse radio. In IEEE 34th European microwave conference (pp. 1257–1260).

  37. Rowe, W. S. T., & Waterhouse, R. B. (1999). Broadband CPW fed stacked patch antenna. Electronics Letter, 35(9), 681–682.

    Article  Google Scholar 

  38. Rowe, W. S. T., & Waterhouse, R. B. (2003). Reduction of backward radiation for CPW fed aperture stacked patch antennas on small ground planes. IEEE Transactions on Antennas and Propagation, 51(6), 1411–1413.

    Article  Google Scholar 

  39. Sibille, A. (2005). Compared performance of UWB antennas for time and frequency domain modulation. In 28th URSI General Assembly, New Delhi, India.

  40. Sego, D. J. (1994). Ultrawide band active radar array antenna for unmanned air vehicles. In IEEE national telesystems conference (pp. 13–17).

  41. Licul, S., Noronha, J. A. N., Davis, W. A., Sweeney, D. G., Anderson, C. R., & Bielawa, T. M. (2003). A parametric study of time-domain characteristics of possible UWB antenna architectures. In IEEE 58th vehicular technology conference, VTC 2003-Fall (pp. 6–9), October 5, 2003.

  42. Stutzman, W. L., & Gary, A. T. (2012). Antenna theory and design (3rd ed.). London: Wiley.

    Google Scholar 

  43. Garg, R., Bhartia, P., Bahl, I., & Ittipiboon, A. (2000). Microstrip antenna design handbook. Artech House Antennas and Propagation Library (2000).

  44. Izquierdo, B. S., Huang, F., & Batchelor, J. C. (2006). Dual band button antennas for wearable applications. In IEEE international workshop on antenna technology small antennas and novel metamaterials (pp. 132–135).

  45. Zaker, R., Ghobadi, C., & Nourinia, J. (2007). A modified microstrip-fed two-step tapered monopole antenna for UWB and WLAN applications. Progress in Electromagnetics Research, 77, 137–148.

    Article  Google Scholar 

  46. Azim, R., Islam, M. T., & Misran, N. (2011). Ground modified double-sided printed compact UWB antenna. Electronics Letters, 47(1), 9–11.

    Article  Google Scholar 

  47. Lin, C. C., & Chuang, H. R. (2008). A 3-12 GHz UWB planar triangular monopole antenna with ridged ground-plane. Progress in Electromagnetics Research, 83, 307–321.

    Article  Google Scholar 

  48. Deng, C.-P., Liu, X.-Y., Zhang, Z.-K., & Tentzeris, M. M. (2012). A miniascape-like triple-band monopole antenna for WBAN applications. IEEE Antennas and Wireless Propagation Letters, 11, 1330–1333.

    Article  Google Scholar 

  49. Kang, C.-H., Wu, S.-J., & Tarng, J.-H. (2011). A novel folded UWB antenna for wireless body area network. IEEE Transactions on Antennas and Propagation, 60(2), 1139–1142.

    Article  Google Scholar 

  50. Izquierdo, B. S., Miller, J. A., Batchelor, J. C., & Sobhy, M. I. (2010). Dual-band wearable metallic button antennas and transmission in body area networks. IET Microwaves, Antennas and Propagation, 4(2), 182–190.

    Article  Google Scholar 

  51. Karthik, V., & Rao, T. R. (2015). Design of a quad band microstrip antenna for wearable wireless devices and investigations on substrate types and performance at various body sites. In International conference on computing and communications technologies (ICCCT) (pp. 221–226), February, 2015.

  52. Zafar, M. J., Razzaqi, A. A., Mustaqim, M., & Khawaja, B. A. (2014). UWB wearable antenna for next generation wireless body area networks (WBANs). In IEEE 17th international multi-topic conference (pp. 78–82), December, 2014.

  53. Lopez, E. E. C., Loapez, A. G., Chandra, R., & Johansson, A. J. (2014). 3D printed miniaturized UWB antenna for wireless body area network. In 8th European conference on antennas and propagation (EuCAP) (pp. 3090–3093), April, 2014.

  54. Abbasi, Q. H., Rehman, M. U., Xiaodong, Y., Alomainy, A., Qaraqe, K., & Serpedin, E. (2013). Ultrawideband band-notched flexible antenna for wearable applications. IEEE Antennas and Wireless Propagation Letters, 12, 1606–1609.

    Article  Google Scholar 

  55. Mittra, R., Bringuier, J., & Kyungho, Y. (2006). Modeling and design of wideband antennas for body area networks (BANs). In IEEE Region 10 conference (TENCON) (pp. 1–3), November, 2006.

  56. Tuovinen, T., Berg, M., Salonen, E., Hamalainen, M., & Linatti, J. (2014). Conductive layer under a wearable UWB antenna: Trade-off between absorption and mismatch losses. In IEEE 8th international symposium on medical information and communication technology (ISMICT) (pp. 1–5), April, 2014.

  57. Shay, W.-T., Chen, K.-H., & Tarng J.-H. (2014). Wide slot antennas for UWB on-body communications. In IEEE antennas and propagation society international symposium (APSURSI) (pp. 1817–1818), July, 2014.

  58. Asano, M., Hori, T., & Fujimoto, M. (2013). Miniaturization of bow-tie slot antenna for mounting on human arm. In Asia-Pacific microwave conference proceedings (APMC) (pp. 554–556).

  59. Reghunath, V., & Upama, M. N. R. (2014). Band notched UWB antenna for wireless body area network. In 4th international conference on advances in computing and communications (ICACC) (pp. 305–308), August, 2014.

  60. Karamchandani, S. H., Shubham, S., Mustafa, H. D., Merchant, S. N., & Desai, U. B. (2011). Dual band M-shaped UWB patch antenna for wireless body area networks. In 8th international conference on information, communications and signal processing (ICICS) (pp. 1–5), December, 2011.

  61. Shay, W.-T., Chen, K.-H., & Tarng, J.-H. (2013). A reduced-size wide slot antenna for enhancing along-body radio propagation in UWB on-body communications. IEEE Transactions on Antennas and Propagation, 62(3), 1194–1203.

    Article  Google Scholar 

  62. Chahat, N., Zhadobov, M., Sauleau, R., & Ito, K. (2010). Design and characterization of an UWB wearable antenna. In Loughborough antennas and propagation conference (LAPC) (pp. 461–464), November, 2010.

  63. Lee, S. L., Ali, K., Brizzi, A., Keegan, J., Hao, Y., & Yang, G. Z. (2011). A whole body statistical shape model for radio frequency simulation. In International conference of the IEEE Engineering in Medicine and Biology Society (pp. 7143–7146) (pp. 7143–7146), Boston, MA, USA.

  64. CST MICROWAVE STUDIO®. http://www.cst.com.

  65. Wittig, T. Visible Human Project ®Male model, CSTComputer simulation technology. http://www.nlm.nih.gov/research/visible/visible_human.html.

  66. Wittig, T. BioEM simulations with CST STUDIO SUITE, CSTComputer simulation technology. http://www.cst.com.

  67. Durney, C. H., Massoudi, H., & Iskander, M. F. (1986). Radiofrequency radiation dosimetry handbook. Brooks Air Force Base-USAFSAM-TR-85-73.

  68. Stuchly, M. A., & Stuchly, S. S. (1980). Dielectric properties of biological substances—Tabulated. Journal of Microwave Power, 15(1), 19–26.

    Article  Google Scholar 

  69. Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine & Biology, 41, 2251–2269.

    Article  Google Scholar 

  70. Gabriel, C., Gabriel, S., & Lau, R. W. (1996). The dielectric properties of biological tissues: I, Literature survey. Physics in Medicine & Biology, 41(11), 2231–2249.

    Article  Google Scholar 

  71. Gabriel, C., Chan, T. Y. A., & Grant, E. H. (1994). Admittance models for open-ended coaxial probes and their place in dielectric spectroscopy. Physics in Medicine & Biology, 39(12), 2183–2200.

    Article  Google Scholar 

  72. Peyman, A., Rezazadeh, A. A., & Gabriel, C. (2001). Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies. Physics in Medicine & Biology, 46, 1617–1629.

    Article  Google Scholar 

  73. ICNIRP. (1998). Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Physics, 74(4), 494–522.

  74. IEEE. (2003). IEEE recommended practice for determining the peak spatial-average specific absorption rate (SAR) in the human head from wireless communications devices: Measurement techniques. IEEE Std. 1528-2003.

  75. Scarpello, M. L., Kurup, D., Rogier, H., Ginste, D. V., Axisa, F., Vanfleteren, J., et al. (2011). Design of an implantable slot dipole conformal flexible antenna for biomedical applications. IEEE Transactions on Antennas and Propagation, 59(10), 3556–3564.

    Article  Google Scholar 

  76. Guy, A. W. (1968). Analysis of electromagnetic fields induced in biological tissues by thermographic studies on equivalent phantom models. IEEE Transactions on Microwave Theory and Techniques, 19(2), 205–214.

    Article  Google Scholar 

  77. Kobayashi, T., et al. (1993). “Dry phantom composed of ceramics and its application to SAR estimation. IEEE Transactions on Microwave Theory and Techniques, 41(1), 136–140.

    Article  Google Scholar 

  78. Nikawa, Y., Chino, M., & Kikuchi, K. (1996). Soft and dry phantom modeling material using silicone rubber with carbon fiber. IEEE Transactions on Microwave Theory and Techniques, 44(10), 1949–1952.

    Article  Google Scholar 

  79. Tamura, H., et al. (1997). Dry phantom composed of ceramics and graphite powder. IEEE Transactions on Electromagnetic Compatibility, 39(2), 132–137.

    Article  Google Scholar 

  80. Chang, J. T., et al. (2000). A conductive plastic for simulating biological tissue at microwave frequencies. IEEE Transactions on Electromagnetic Compatibility, 42(1), 76–81.

    Article  Google Scholar 

  81. Ito, K., Furuya, K., Okano, Y., & Hamada, L. (1998). Development and the characteristics of a biological tissues-equivalent phantom for microwaves. IEICE Transactions, J81-B-II(12), 1126–1135.

    Google Scholar 

  82. Ito, K., et al. (2001). Development and characteristics of a biological tissues-equivalent phantom for microwaves. Electronics and Communications in Japan, 84(4), 67–77.

    Article  Google Scholar 

  83. Petoussi-Henss, N., Zankl, M., Fill, U., & Regulla, D. (2002). The GSF family of voxel phantoms. Physics in Medicine & Biology, 47, 89–106.

    Article  Google Scholar 

  84. Zankl, M., Petoussi-Henss, N., Fill, U., & Regulla, D. (2003). The application of voxel phantoms to the internal dosimetry of radionuclides. Radiation Protection Dosimetry, 105, 539–548.

    Article  Google Scholar 

  85. Zubal, G., Harrel, C., Smith, E., Ratner, Z., Gindi, G., & Hoffer, P. (1994). Computerized three-dimensional segmented human anatomy. Medical Physics, 21, 299–302.

    Article  Google Scholar 

  86. Dimbylow, P. J., et al. (1997). FDTD calculations of the whole-body averaged SAR in an anatomically realistic voxel model of the human body from 1 MHz to 1 GHz. Physics in Medicine & Biology, 42, 479–490.

    Article  Google Scholar 

  87. Jones, D. G., et al. (1997). A realistic anthropomorphic phantom for calculating organ doses arising from external photon irradiation. Radiation Protection Dosimetry, 72, 21–29.

    Article  Google Scholar 

  88. Spitzer, V., Ackerman, M. J., Scherzinger, A. L., & Whitlock, D. (1996). The visible human male: A technical report. Journal of the American Medical Informatics Association, 3(2), 118.

    Article  Google Scholar 

  89. Kramer, R., Vieira, J. W., Khoury, H. J., & Fuelle, D. (2003). All about MAX: A male adult voxel phantom for Monte Carlo calculations in radiation protection dosimetry. Physics in Medicine & Biology, 48, 1239–1262.

    Article  Google Scholar 

  90. Nagaoka, T., Watanabe, S., Sakurai, K., Kuneida, E., Taki, M., & Yamanka, Y. (2004). Development of realistic high resolution whole-body voxel models of Japanese adult male and female of average height and weight, and application of models to radio-frequency electromagnetic-field dosimetry. Physics in Medicine & Biology, 49, 1–15.

    Article  Google Scholar 

  91. Dimbylow, P. J., et al. (2005). Development of the female voxel phantom, NAOMI, and its application to calculations of induced current densities and electric fields from applied low frequency magnetic and electric fields. Physics in Medicine & Biology, 50, 1047–1070.

    Article  Google Scholar 

  92. Becker, J., Zankl, M., Fill, U., & Hoeschen, C. (2008). Katja—The 24th week of virtual pregnancy for dosimetric calculations. Polish Journal of Medical Physics and Engineering, 14(1), 13–19.

    Article  Google Scholar 

  93. Christ, A., Schmid, G., Djafarzadeh, R., Überbacher, R., Cecil, S., Zefferer, M., et al. (2009). Numerische Bestimmung der Spezifischen Absorptionsrate bei Ganzkörperexposition von Kindern: Abschlußbericht. Technical report, IT’IS Foundation, Zürich, Switzerland, July, 2009.

  94. Christ, A., et al. (2010). The virtual family—Development of surface based anatomical models of two adults and two children for dosimetric simulations. Physics in Medicine and Biology, 55(2), 23–38.

    Article  Google Scholar 

  95. Cabot, E., Christ, A., Bühlmann, B., Zefferer, M., Chavannes, N., & Kuster, N. (2014). Quantification of the RF exposure of the foetus using anatomical CAD models in three different gestational phases. Health Physics, 107(5), 369–381.

    Article  Google Scholar 

  96. Wu, T., et al. (2011). Chinese adult anatomical models and the application in evaluation of RF exposures. Physics in Medicine & Biology, 56, 2075–2089.

    Article  Google Scholar 

  97. Yanamadala, J., Noetscher, G. M., Makarov, S. N., & Leone, A. P. (2013). Comparison of cephalic and extracephalic montages for transcranial direct current stimulation—A numerical study. In IEEE symposium on signal processing in medicine and biology, December, 2013.

  98. Elloian, J. M., Noetscher, G. M., Makarov, S. N., & Leone, A. P. (2013). Continuous wave simulations on the propagation of electromagnetic fields through the human head. IEEE symposium on signal processing in medicine and biology, December, 2013.

  99. Elloian, J. M., Noetscher, G. M., Makarov, S. N., & Leone, A. P. (2014). Continuous wave simulations on the propagation of electromagnetic fields through the human head. IEEE Transactions Biomedical Engineering, 61(6), 1676–1683.

    Article  Google Scholar 

  100. Taflove, A. (1995). Computational electrodynamics: The finite-difference time-domain method. Boston: Artech House.

    MATH  Google Scholar 

  101. Keller, J. B. (1962). Geometrical theory of diffraction. J. Opt. Soc. Am., 52, 116–130.

    Article  MathSciNet  Google Scholar 

  102. Harrington, R. F. (1968). Field computation moment methods. New York: Macmillan.

    Google Scholar 

  103. Ross, C. T. F. (1998). Advanced applied finite element method. Chichester: Horwood Publishers.

    Book  Google Scholar 

  104. Meyer, F. J. C., et al. (2003). Human exposure assessment in the near field of GSM base-station antennas using a hybrid finite element/method of moments technique. IEEE Transactions on Biomedical Engineering, 50(2), 224–233.

    Article  Google Scholar 

  105. Yee, K. S. (1996). Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media. IEEE Transactions on Antennas and Propagation, 14(3), 302–307.

    MATH  Google Scholar 

  106. Weiland, T. (1977). A discretization model for the solution of Maxwell’s equations for six component fields. Archiv Elektronik Und Uebertragungstechnik, 31, 116–120.

    Google Scholar 

  107. Rahayu, Y., Ngah, R., & Rahman, T. A. (2010). A small novel ultra-wideband antenna with slotted ground plane. INTECH Ultra Wideband (pp. 427-444), August, 2010. ISBN 978-953-307-139-8.

  108. Ghannoum, H., D’Errico, R., Roblin, C., & Begaud, X. (2006). Characterization of the UWB on-body propagation channel. In 7th European conference on antennas and propagation (EUCAP), France, November, 2006.

  109. Rehman, A., Alomainy, A., & Hao, Y. (2007). Compact body-worn coplanar waveguide fed antenna for UWB body-centric wireless communications. In 2nd European conference on antennas and propagation (EUCAP) (pp. 1–4), November 2007, Edinburgh, UK.

  110. Chang, D. C., Liu, J. C., Zeng, B. H., & Liu, M. Y. (2007). Impedance bandwidth enhancement for UWB slot antenna. In  International workshop on antenna technology: Small and smart antennas metamaterials and applications (IWAT '07)  (pp. 184–187), March 2007, Cambridge, UK.

  111. Tuovinen, T., Berg, M., Yazdandoost, K. Y., Salonen, E., Hamalainen, M., & Linatti J. (2012). Impedance behaviour of planar UWB antennas in the vicinity of a dispersive tissue model. In Loughborough antennas & propagation conference (pp. 1–5), November, 2012.

  112. Yazdandoost, K. Y., & Kohno, R. (2006). Small printed antenna for UWB applications. In 1st European conference on antennas and propagation (EuCAP 2006) (pp. 1–4), 6–10 Nov. 2006, Nice, France.

  113. Tuovinen, T., Yazdandoost, K. Y., & Linatti, J. (2011). Ultra wideband loop antenna for on-body communication in wireless body area network. In 6th European conference on antennas and propagation (EUCAP) (pp. 1349–1352), November, 2011.

  114. Wei, Y. F., & Roblin, C. (2012). Multislot antenna with a screening backplane for UWB WBAN applications. International Journal of Antennas and Propagation, 2012, 1–12.

    Google Scholar 

  115. Kwon, K., Ha, J., Lee, S., & Choi, J. (2012). Design of a dual-band on-body antenna for a wireless body area network repeater system. International Journal of Antennas and Propagation, 2012, 1–5.

    Article  Google Scholar 

  116. Cara, D. D., Trajkovikj, J., Sánchez, R. T., Zürcher, J. F., & Skrivervik, A. K. (2013). A low profile UWB antenna for wearable applications: The tripod kettle antenna (TKA). In 7th European conference on antennas and propagation (EUCAP) (pp. 3156–3159), November, 2013.

  117. Ghannoum, H., Bories, S., & D’Errico, R. (2006). Small-size UWB plana antenna and its behaviour in WBAN/WPAN applications. In The Institute of Engineering & Technology seminar on UWB systems, technology and applications (pp. 221–225), London, April, 2006.

  118. Selvan, P. T., Raghvan, S., & Gopinath, M. (2013). CPW-fed folded UWB monopole slot antenna for WiMAX and WLAN applications. In International conference on emerging trends in computing, communication, and nanotechnology (ICE-CCN) (pp. 696–699), Tirunelveli.

  119. Liang, J., Chiau, C. C., Chen, X., & Parini, C. G. (2007). Study of a printed circular disc monopole antenna for UWB systems. IEEE Transactions on Antennas and Propagation, 53(11), 3500–3504.

    Article  Google Scholar 

  120. Sze, J. Y., & Shiu, J. Y. (2008). Design of band-notched ultra wideband square aperture antenna with a hat-shaped back-patch. IEEE Transactions on Antennas and Propagation, 56(10), 3311–3314.

    Article  Google Scholar 

  121. Costa, J. R., Medeiros, C. R., & Fernandes, C. A. (2009). Performance of a crossed exponentially tapered slot antenna for UWB systems. IEEE Transactions on Antennas and Propagation, 57(5), 1345–1352.

    Article  Google Scholar 

  122. Thomas, K. G., & Sreenivasan, M. (2010). A simple ultra wideband planar rectangular printed antenna with band dispensation. IEEE Transactions on Antennas and Propagation, 58(1), 27–34.

    Article  Google Scholar 

  123. Abbosh, A. M., & Bialkowski, M. E. (2009). Design of UWB planar band-notched antenna using parasitic elements. IEEE Transactions on Antennas and Propagation, 57(3), 796–799.

    Article  Google Scholar 

  124. Antoniades, M. A., & Eleftheriades, G. V. (2008). A compact multiband monopole antenna with a defected ground plane. IEEE Antennas and Wireless Propagation Letters, 7, 652–655.

    Article  Google Scholar 

  125. Qu, S. W., et al. (2006). A band-notched ultra wide band printed monopole antenna. IEEE Antennas and Wireless Propagation Letters, 5, 495–498.

    Article  Google Scholar 

  126. Barner, F. S., & Greenebaum, B. (2007). Bioengineering and biophysical aspects of electromagnetic field (3rd ed.). London: Taylor and Francis.

    Google Scholar 

  127. Kumar, V., & Gupta, B. (2014). Swastika-slot UWB antenna for body-worn application in WBAN. In IEEE 8th international symposium on medical information and communication technology (ISMICT) (pp. 1–5), April, 2014.

  128. Kumar, V., & Gupta, B. (2016). On body measurements of SS-UWB patch antenna for WBAN applications. International Journal of Electronics & Communications (AEU), 70(5), 668–675.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vivek Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Gupta, B. Design Aspects of Body-Worn UWB Antenna for Body-Centric Communication: A Review. Wireless Pers Commun 97, 5865–5895 (2017). https://doi.org/10.1007/s11277-017-4815-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4815-x

Keywords

Navigation