Skip to main content
Log in

Polarization Planning for Wireless Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Polarization diversity enables frequency reuse in a telecommunication network. The most widely considered solution is to use two orthogonal polarizations on the same link, which enables to double the available bandwidth. In this paper, we study the possibility to connect the nodes of a ring topology network with one single channel for all the links, with the condition that the polarization of any link is orthogonal to the polarization of the two adjacent links. The solution proposed in this paper can improve spectrum efficiency by up to 50% in comparison with the widespread polarization multiplexing solution. Furthermore, it has implications on network topology and channel allocation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Bojic, D., et al. (2013). Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic software-defined management. IEEE Communications Magazine, 51(9), 86–93.

    Article  Google Scholar 

  2. Brady, J., Behdad, N., & Sayeed, A. M. (2013). Beamspace mimo for millimeter-wave communications: System architecture, modeling, analysis, and measurements. IEEE Transactions on Antennas and Propagation, 61(7), 3814–3827.

    Article  Google Scholar 

  3. Collins, B. S. (2000). Polarization diversity antennas for compact base stations. Microwave Journal, 43(1), 76–88.

    Google Scholar 

  4. Ezran, P., Haddad, Y., & Debbah, M. (2016). Polarization diversity in ring topology networks. In 2016 IEEE 84th vehicular technology conference.

  5. Fuchs, B., & Fuchs, J. J. (2011). Optimal polarization synthesis of arbitrary arrays with focused power pattern. IEEE Transactions on Antennas and Propagation, 59(12), 4512–4519.

    Article  MathSciNet  MATH  Google Scholar 

  6. Hansryd, J., & Edstam, J. (2011). Microwave capacity evolution. Ericsson Review, 1, 22–27.

    Google Scholar 

  7. Hoydis, J., Hosseini, K., ten Brink, S., & Debbah, M. (2013). Making smart use of excess antennas: Massive MIMO, small cells, and TDD. Bell Labs Technical Journal, 18(2), 5–21.

    Article  Google Scholar 

  8. Karabey, O. H., Bildik, S., Bausch, S., Strunck, S., Gaebler, A., & Jakoby, R. (2013). Continuously polarization agile antenna by using liquid crystal-based tunable variable delay lines. IEEE Transactions on Antennas and Propagation, 61(1), 70–76.

    Article  Google Scholar 

  9. Kwon, S. C., & Molisch, A. F. (2015) Capacity maximization with polarization-agile antennas in the mimo communication system. In 2015 IEEE global communications conference (GLOBECOM) (pp. 1–6). IEEE.

  10. Kwon, S. C., & Stüber, G. L. (2014). Polarization division multiple access on NLoS wide-band wireless fading channels. IEEE Transactions on Wireless Communications, 13(7), 3726–3737.

    Article  Google Scholar 

  11. Lehpamer, H. (2010). Microwave transmission networks. New York City: New York City.

    Google Scholar 

  12. Lempiăinen, J. J., & Laiho-Steffens, J. K. (1998). The performance of polarization diversity schemes at a base station in small/micro cells at 1800 MHz. IEEE Transactions on Vehicular Technology, 47(3), 1087–1092.

    Article  Google Scholar 

  13. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive mimo: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  14. Molisch, A. F. (2010). Wireless communications. Hoboken: Wiley.

    Google Scholar 

  15. Qualcomm. (2013). The 1000x mobile data challenge. https://www.qualcomm.com/1000x/.

  16. Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up mimo: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30(1), 40–60.

    Article  Google Scholar 

  17. Sayeed, A., & Brady, J. (2013). Beamspace mimo for high-dimensional multiuser communication at millimeter-wave frequencies. In 2013 IEEE global communications conference (GLOBECOM) (pp. 3679–3684). IEEE.

  18. Sayeed, A. M., & Behdad, N. (2011). Continuous aperture phased mimo: A new architecture for optimum line-of-sight links. In 2011 IEEE international symposium on antennas and propagation (APSURSI) (pp. 293–296). IEEE.

  19. Swindlehurst, A. L., Ayanoglu, E., Heydari, P., & Capolino, F. (2014). Millimeter-wave massive mimo: The next wireless revolution? IEEE Communications Magazine, 52(9), 56–62.

    Article  Google Scholar 

  20. Turkmani, A., Arowojolu, A., Jefford, P., & Kellett, C. (1995). An experimental evaluation of the performance of two-branch space and polarization diversity schemes at 1800 MHz. IEEE Transactions on Vehicular Technology, 44(2), 318–326.

    Article  Google Scholar 

  21. Xiao, J. J., & Nehorai, A. (2009). Optimal polarized beampattern synthesis using a vector antenna array. IEEE Transactions on Signal Processing, 57(2), 576–587.

    Article  MathSciNet  Google Scholar 

  22. Zhang, Q., Jin, S., Wong, K. K., Zhu, H., & Matthaiou, M. (2014). Power scaling of uplink massive mimo systems with arbitrary-rank channel means. IEEE Journal of Selected Topics in Signal Processing, 8(5), 966–981.

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the Office of the Chief Scientist of the Israel Ministry of Economy under the Neptune generic research project. Neptune is the Israeli consortium for network programming.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Ezran.

Additional information

Part of the material in this paper was presented in [4].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ezran, P., Haddad, Y. & Debbah, M. Polarization Planning for Wireless Networks. Wireless Pers Commun 98, 759–778 (2018). https://doi.org/10.1007/s11277-017-4894-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4894-8

Keywords

Navigation