Skip to main content
Log in

Efficient Secure Channel Coding based on QPP-Block-LDPC Codes

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

An encrypting block low-density parity-check code based on quadratic permutation polynomials (QPPs) (QPP-Block-LDPC) is proposed in this paper. The parity-check matrix of the encrypting QPP-Block-LDPC code is composed of a group of permutations, which can be mapped to QPPs. The coefficients of the QPPs, which are served as secret keys, are utilized to randomize the permutation submatrices. A secure channel coding scheme is presented using the QPP-Block-LDPC code to produce the error-correcting ciphertexts. The coding can achieve more efficient implementation and provide an acceptable security level for the communication over the Gaussian wiretap channel. Simulation results demonstrate that this coding offers good trade-offs between the error performance and the security level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacques, J. A. F. (2007). Vector microprocessors for cryptography. Cambridge: Cambridge University Press. 2007.

    Google Scholar 

  2. Mceliece, R. J. (1978). A public-key cryptosystem based on algebraic coding theory. DSN Progress Report, 42–44, 114–116.

    Google Scholar 

  3. Berlekamp, E. R., McEliece, R. J., & Van Tilborg, H. C. A. (1948). On inherent intractability of certain coding problems. IEEE Transaction on Information Theory, 24, 384–386.

    Article  MathSciNet  MATH  Google Scholar 

  4. Rao, T.N.R.(1984). Joint encryption and error correction schemes. Proceedings of 11th annual International symposium on Computer architecture. Ann Arbor, USA, 1984, (pp. 240–241).

  5. Rao, T. R. N., & Nam, K. H. (1987). Private-key algebraic-code encryption. IEEE Transaction on Information Theory, 35(4), 829–833.

    Article  MATH  Google Scholar 

  6. Struik, R., & Tilburg, J.(1988). The Rao-Nam scheme is insecure against a chosen-plaintext attack. Advances in Cryptology, Crypto 87. Santa Barbara, (pp. 445–457).

  7. Sun, H.M., & Shieh, S.P.(1988). On private-key cryptosystems based on product codes. Proceedings of 3rd Australasian Conference on Information Security and Privacy. Brisbane, (pp. 68–79).

  8. Barbero, A.I., & Ytrehus, O.(1998). Modifications of the Rao-Nam cryptosystem. Proceedings of International Conference on Coding Theory, Cryptography and Related Areas. Guanajuato, Mexico, 1998, (pp. 1–13).

  9. Xu, L. (2003). A general encryption scheme based on MDS code. Proceedings of IEEE International Symposium on Information Theory 2003. Yokohama, Japan, 2003, (pp. 7–11)

  10. Baldi, M., & Chiaraluce, F. (2007). Cryptanalysis of a new instance of McEliece cryptosystem based on QC-LDPC codes. In Proceedings of IEEE International Symposium Information Theory 2007, Nice, France (pp. 2591–2595).

  11. Mackay, D. J. C. (1999). Good error correcting codes based on very sparse matrices. IEEE Transaction on Information Theory, 45(1), 399–431.

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhong, H., & Zhang, T. (2005). Block-LDPC: a practical LDPC coding system design approach. IEEE Transaction on Circuits and Systems-I: Regular Papers, 52(4), 766–775.

    Article  MATH  Google Scholar 

  13. Tao, X., Zhou, X., Feng, D., & Zheng, L.(2011). Circulant search algorithm for the constructon of QC-LDPC codes. Proceedings of IEEE International Conference on Broadband Network and Multimedia Technology (IC-BNMT), Shenzhen, China (pp. 18–191).

  14. Guan, W., & Liang, L. P. (2015). Construction of Block-LDPC codes based on quadratic permutation polynomials. Journal of Communications and Networks, 5(3), 48–52.

    Google Scholar 

  15. Sobhi Afshar, A. A., Eghlidos, T., & Aref, M. R. (2009). Efficient secure channel coding based on quasi-cyclic low-density parity-check codes. IET Communications, 3(2), 279–292.

    Article  MathSciNet  MATH  Google Scholar 

  16. Baldi, M., Bianchi, M., & Chiaraluce, G. F. (2013). Security and complexity of the McEliece cryptosystem based on quasi-cyclic low-density parity-check codes. IET Information Security, 7(3), 212–220.

    Article  Google Scholar 

  17. Baldi, M., Chiaraluce, F., Garello, R., & Mininni, F. (2007). Quasi-cyclic low-density parity-check codes in the McEliece cryptosystem. IEEE International Conference on Communications (ICC2007), Glasgow, Scotland (pp. 951–956).

  18. Wyner, A. D. (1975). The wire-tap channel. Journal of System and Technology, Bell, 54(8), 1355–1387.

    Article  MathSciNet  MATH  Google Scholar 

  19. Klinc, D., Ha, J., McLaughlin, S., Barros, J., & Kwak, B. J. (2011). LDPC codes for the Gaussian wiretap channel. IEEE Transaction on Information Forensics Security, 6(3), 532–540.

    Article  Google Scholar 

  20. Wong, C. W., Wong, T. F., & Shea, J. M. (2011). Secret-sharing LDPC codes for the BPSK-constrained Gaussian wiretap channel. IEEE Transaction on Information Forensics Security, 6(3), 551–564.

    Article  Google Scholar 

  21. Beker, H., & Piper, F. (1982). Cipher systems: The protection of communications. Hoboken: Wiley-Interscience. 1982.

    MATH  Google Scholar 

  22. Sun, J., & Takeshita, O. Y. (2005). Interleavers for Turbo codes using permutation polynomials over integer rings. IEEE Transaction on Information Theory, 51(1), 101–119.

    Article  MathSciNet  MATH  Google Scholar 

  23. Arabaci, M., Djordjevic, I. B., Saunders, R., & Marcoccia, R. M. (2010). Polarization-multiplexed rate-adaptive non-binary-quasi-cyclic-LDPC-coded multilevel modulation with coherent detection for optical transport networks. Optical Express, 18(3), 1820–1832.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wu Guan.

Additional information

This work was supported in part by the National Natural Science Foundation of China under Grant No. 61471354.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, W., Liang, L. Efficient Secure Channel Coding based on QPP-Block-LDPC Codes. Wireless Pers Commun 98, 1001–1014 (2018). https://doi.org/10.1007/s11277-017-4905-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4905-9

Keywords

Navigation