Skip to main content
Log in

A Feedback Aware Reliable Transport Protocol with Improved Window Increment Mechanism for Inter Vehicular Wireless Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In recent years, inter vehicular networking technologies are gaining momentum due to its merger with wireless internet through infrastructure gateways. A large quantity of internet data traffic heavily relies on transmission control protocol (TCP) due to reliable connection oriented services. TCP with sluggish window growth and weakly shaped congestion control mechanism fails under multi-hop inter vehicular conditions due to disjoint links and wireless channel errors. This paper introduces inter vehicular access network (IVAN) TCP, designed to suppress the limitations of congestion control and window increment algorithm in the multi-hop inter vehicular wireless environment. The IVAN’s flexible window increment algorithm newer growth pattern achieves a faster increase in the transmission rate. Furthermore, IVAN’s congestion control algorithm reduces the transmission rate based on sender’s window utility and relay router’s explicit congestion notification. The simulation results confirm the significant rise in IVAN’s throughput performance, substantial reduction in the queue packet drop and packet latency against standard TCP variants under inter vehicular environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zeadally, S., Hunt, R., Chen, Y., et al. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Springer Journal of Telecommunication Systems. doi:10.1007/s11235-010-9400-5.

    Google Scholar 

  2. Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network. Elsevier Network and Computer Applications. doi:10.1016/j.jnca.2013.02.036.

    Google Scholar 

  3. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., et al. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials. doi:10.1109/SURV.2011.061411.00019.

    Google Scholar 

  4. Cunha, F., Villas, L., Boukerche, A., et al. (2016). Data communication in VANETs: Protocols, applications and challenges. Elsevier Ad Hoc Networks. doi:10.1016/j.adhoc.2016.02.017.

    Google Scholar 

  5. IEEE Standard for Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications. (2007). Std:802.11-2007.

  6. IEEE 1609.0/D0.7. Draft Standard for Wireless Access in Vehicular Environments (WAVE)—Architecture. (2009).

  7. IEEE 1609.4/D6.0. (2010). Draft Standard for Wireless Access in Vehicular Environments (WAVE)—Multi-channel Operation in IEEE Vehicular Technology Society.

  8. IEEE 1609.3/D5.0. (2010). Trial-Use Standard for Wireless Access in Vehicular Environments (WAVE)—Networking Services. IEEE Vehicular Technology Society.

  9. Gerla, M., & Kleinrock, L. (2011). Vehicular networks and the future of the mobile internet. Elsevier Computer Networks. doi:10.1016/j.comnet.2010.10.015.

    Google Scholar 

  10. Campolo, C., Molinaro, A., & Scopigno, R. (2015). From today’s VANETs to tomorrow’s planning and the bets for the day after. Elsevier Vehicular Communications. doi:10.1016/j.vehcom.2015.06.002.

    Google Scholar 

  11. Baid, A., Mukherjee, S., & Vu, T. (2013). Enabling vehicular networking in the mobility first future internet architecture. Proceedings of IEEE WoWMoM. doi:10.1109/WoWMoM.2013.6583417.

    Google Scholar 

  12. Jude, J. A., & Ganesan, R. (2015). A comprehensive experimental analysis of standard TCP variants in vehicular environment. Proceedings of IEEE ICCCT. doi:10.1109/ICCCT2.2015.7292774.

    Google Scholar 

  13. Zhang, L., Lakas, A., El-Sayed, H., & Barka, E. (2013). Mobility analysis in vehicular ad-hoc network (VANET). Elsevier Network and Computer Applications. doi:10.1016/j.jnca.2012.12.008.

    Google Scholar 

  14. Mast, N., & Owens, T. J. (2011). A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks. EURASIP Wireless Communications and Networking. doi:10.1186/1687-1499-2011-96.

    Google Scholar 

  15. Al-Jubari, A. M., Othman, M., Mohd Ali, B., et al. (2011). TCP performance in multi-hop wireless ad hoc networks: Challenges and solution. EURASIP Wireless Communications and Networking. doi:10.1186/1687-1499-2011-198.

    Google Scholar 

  16. Postel, J. (1981). Transmission Control Protocol. RFC 793, IETF Network Working Group.

  17. Allman, M., Paxson, V., & Stevens, W. (1999). TCP Congestion Control. RFC 2581, IETF Network Working Group.

  18. Ramakrishnan, K., Floyd, S., & Black, D. (2001). The Addition of Explicit Congestion Notification (ECN) to IP. RFC 3168, IETF Network Working Group.

  19. Sathya Priya, S., & Murugan, K. (2015). Enhancing TCP fairness in wireless networks using dual queue approach with optimal queue selection. Springer Wireless Personal Communication. doi:10.1007/s11277-015-2455-6.

    Google Scholar 

  20. Huang, P.-K., Lin, X., & Wang, C.-C. (2013). a low-complexity congestion control and scheduling algorithm for multihop wireless networks with order-optimal per-flow delay. IEEE/ACM Transactions on Networking. doi:10.1109/TNET.2012.2213343.

    Google Scholar 

  21. Sreekumari, P., & Chung, S.-H. (2011). TCP NCE: A unified solution for non-congestion events to improve the performance of TCP over wireless networks. EURASIP Wireless Communications and Networking. doi:10.1186/1687-1499-2011-23.

    Google Scholar 

  22. Sreekumari, P., & Lee, M. (2013). TCP NRT: A new TCP algorithm for differentiating non-congestion retransmission timeouts over multi-hop wireless networks. EURASIP Wireless Communications and Networking. doi:10.1186/1687-1499-2013-172.

    Google Scholar 

  23. El-Ocla, H. (2010). TCP CERL: Congestion control enhancement over wireless Networks. Springer Wireless Networks. doi:10.1007/s11276-008-0123-4.

    Google Scholar 

  24. Yun, J.-H. (2009). Cross-layer explicit link status notification to improve TCP performance in wireless networks. EURASIP Wireless Communications and Networking. doi:10.1155/2009/617818.

    Google Scholar 

  25. Byun, H. J., & Lim, J. T. (2005). Explicit window adaptation algorithm over TCP wireless networks. IEE Proceedings—Communications. doi:10.1049/ip-com:20045091.

    Google Scholar 

  26. Peng, F., & Leung, V. C. M. (2007). Enhancing fairness and throughput of TCP in heterogeneous wireless access networks. Springer International Journal of Wireless Information Networks. doi:10.1109/PIMRC.2003.1264239.

    Google Scholar 

  27. Xu, K., Tian, Y., & Ansari, N. (2004). TCP-jersey for wireless IP communication. IEEE Transactions on Selected Areas in Communications. doi:10.1109/JSAC.2004.825989.

    Google Scholar 

  28. Kai, Xu, Tian, Ye, & Ansari, Nirwan. (2005). Improving TCP performance in integrated wireless communications networks. Elsevier Computer Networks. doi:10.1016/j.comnet.2004.07.006.

    Google Scholar 

  29. Henderson, et al. (2012). The NewReno Modification to TCP’s Fast Recovery Algorithm. RFC 6582, IETF Network Working Group.

  30. Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., & Wang, R. (2002). TCP westwood: end-to-end congestion control for wired/wireless networks. Springer Wireless Networks. doi:10.1023/A:1016590112381.

    MATH  Google Scholar 

  31. Jiang, H., Luo, Y., Zhang, Q. Y., Yin, M. Y., & Wu, C. (2016). TCP-gvegas with prediction and adaptation in multi-hop ad hoc networks. Journal of Wireless Networks. doi:10.1007/s11276-016-1242-y.

    Google Scholar 

  32. Jamalia, S., Alipasandib, N., & Alipasandic, B. (2015). TCP pegas: A PSO-based improvement over TCP vegas. Elsevier Applied Soft Computing. doi:10.1016/j.asoc.2015.03.048.

    Google Scholar 

  33. Jung, S., Lee, J., Lee, G., Pyun, S.-Y., & Cho, D.-H. (2014). Novel fastest retransmission and rate control schemes for improving TCP performance in wireless ad hoc networks. Journal of Wireless Personal Communications. doi:10.1007/s11277-013-1376-5.

    Google Scholar 

  34. Badarla, V., & Siva Ram Murthy., C. (2011). Learning-TCP: A stochastic approach for efficient update in TCP congestion window in ad hoc wireless networks. Journal of Parallel and Distributed Computing. doi:10.1016/j.jpdc.2010.12.012.

    Google Scholar 

  35. Utsumia, S., & Zabirc, S. M. S. (2014). A new high-performance TCP friendly congestion control over wireless networks. Elsevier Journal of Network and Computer Applications. doi:10.1016/j.jnca.2014.02.003.

    Google Scholar 

  36. Postel, J. (1981). Internet Protocol. RFC 791, IETF Network Working Group.

  37. Showail, A., Jamshaid, K., & Shihada, B. (2016). Buffer sizing in wireless networks: Challenges, solutions, and opportunities. IEEE Communications Magazine. doi:10.1109/MCOM.2016.7452277.

    Google Scholar 

  38. VanetMobisim:microscopic and macroscopic vehicular traffic simulator tool. http://vanet.eurecom.fr.

  39. NS-2. Network Simulator (NS-2.34). http://www.isis.edu/nsnam/ns.

  40. Floyd, S. (2008). Metrics for the Evaluation of Congestion Control Mechanisms. RFC 5166, IETF Network Working Group.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joseph Auxilius Jude.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jude, M.J.A., Diniesh, V.C., Shivaranjani, M. et al. A Feedback Aware Reliable Transport Protocol with Improved Window Increment Mechanism for Inter Vehicular Wireless Network. Wireless Pers Commun 98, 1119–1134 (2018). https://doi.org/10.1007/s11277-017-4911-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4911-y

Keywords

Navigation