Skip to main content

Advertisement

Log in

Device-to-Device Communications: A Contemporary Survey

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Device-to-device (D2D) communication is a new enabling technology for the next generation cellular networks. In D2D communications, two or more user equipments directly communicate with each other with a very restricted involvement of the evolved Node B. The main objective is to realize high data rates, low power consumption, low delays and improve the overall spectral efficiency. In addition to these advantages, D2D communications poses several research challenges in terms of interference and power control, and whether or not D2D communication should be used in a given environment. In order to solve these issues, significant amount of research and development work has been done by both industry and academia, which is comprehensively covered in this survey article. Firstly, we discuss the use case scenarios of D2D communication by classifying its applications into two types: commercial and public safety services. This is followed by an in-depth discussion on the state-of-the-art solutions proposed in various research studies addressing different issues associated with each classification. While discussing a large number of previous works, we highlight some of the open research issues and challenges in D2D communications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. UMTS Forum. (2011). Mobile traffic forecasts 20102020, Report No. 44. http://www.umts-forum.org/component/option,com_docman/task,cat_view/gid,485/Itemid,213/.

  2. OVUM Plc. (2009). Mobile Broadband Users and Revenues Forecast Pack to 2014.

  3. Index, Cisco Visual Networking. (2015). Global mobile data traffic forecast update, 2014–2019. San Jose, CA: Cisco.

    Google Scholar 

  4. IEEE Wireless Communications, (2015). Cooperative device-to-device communications in cellular networks. 22(3), 124–129. doi:10.1109/MWC.2015.7143335.

  5. Mumtaz, S., & Rodriguez, J. (Eds.) (2014). Smart device to smart device communication. Springer. ISBN: 978-3-319-04963-2.

  6. Doppler, K., Rinne, M., Wijting, C., Riberio, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.

    Article  Google Scholar 

  7. Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Miklos, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(12), 170–177.

    Article  Google Scholar 

  8. Janis, P., Chia-Hao, Y., Doppler, K., Ribeiro, C., Wijting, C., Hugl, K., et al. (2009). Device-to-device communication underlaying cellular communications systems. International Journal of Communications, Network and System Sciences, 2009, 169–178.

    Article  Google Scholar 

  9. Liu, J., Kato, N., Ma, J., & Kadowaki, N. (2014). Device-to-device communication in LTE-advanced networks: A survey. IEEE Communications Surveys and Tutorials, 17(4), 1923–1940. doi:10.1109/COMST.2014.2375934.

    Article  Google Scholar 

  10. Asadi, A., Wang, A. Q., & Mancuso, V. (2014). A survey on device-to-device communication in cellular networks. IEEE Communications Surveys and Tutorials, 16(4), 1801–1819.

    Article  Google Scholar 

  11. Mach, P., Becvar, Z., & Vanek, T. (2015). In-band device-to-device communication in OFDMA cellular networks: a survey and challenges. IEEE Communications Surveys and Tutorials, 17(4), 1885–1922. doi:10.1109/COMST.2015.2447036.

    Article  Google Scholar 

  12. Qualcomm. (2013). LTE direct overview. Available online at http://www.qualcomm.com/media/documents/lte-direct-whitepaper.

  13. Pyattaev, A., Johnsson, K., Andreev, S., & Koucheryavy, Y. (2013). 3GPP LTE traffic offloading onto WiFi Direct. In IEEE wireless communications and networking conference workshops (WCNCW), 2013, Shanghai (pp. 135–140). doi:10.1109/WCNCW.2013.6533328

  14. Pyattaev, A., Johnsson, K., Andreev, S., & Koucheryavy, Y. (2013). Proximity-based data offloading via network assisted device-to-device communications. In IEEE 77th dresden on vehicular technology conference (VTC Spring), 2013 (pp. 1–5). doi:10.1109/VTCSpring.2013.6692723.

  15. Andreev, S., Galinina, O., Pyattaev, A., Johnsson, K., & Koucheryavy, Y. (2015). Analyzing assisted offloading of cellular user sessions onto D2D links in unlicensed bands. IEEE Journal on Selected Areas in Communications, 33(1), 67–80. doi:10.1109/JSAC.2014.2369616.

    Article  Google Scholar 

  16. Pyattaev, A., Johnsson, K., Surak, A., Florea, R., Andreev, S., & Koucheryavy, Y. (2014). Network-assisted D2D communications: Implementing a technology prototype for cellular traffic offloading. In IEEE wireless communications and networking conference (WCNC), 2014, Istanbul (pp. 3266–3271). doi:10.1109/WCNC.2014.6953070.

  17. Andreev, S., Pyattaev, A., Johnsson, K., Galinina, O., & Koucheryavy, Y. (2014). Cellular traffic offloading onto network-assisted device-to-device connections. IEEE Communications Magazine, 52(4), 20–31. doi:10.1109/MCOM.2014.6807943.

    Article  Google Scholar 

  18. Ding, G., Wang, J., Wu, Q., Yao, Y. D., Song, F., & Tsiftsis, T. A. (2016). Cellular-base-station-assisted device-to-device communications in TV white space. IEEE Journal on Selected Areas in Communications, 34(1), 107–121. doi:10.1109/JSAC.2015.2452532.

    Article  Google Scholar 

  19. Zhang, R., et al. (2015). LTE-unlicensed: The future of spectrum aggregation for cellular networks. IEEE Wireless Communications, 22(3), 15059.

    Google Scholar 

  20. 3GPP, RP-140808: Review of regulatory requirements for unlicensed spectrum, Alcatel-Lucent, Alcatel-Lucent Shanghai Bell, Ericsson, Huawei, HiSilicon, IAESI, LG, Nokia, NSN, Qualcomm, NTT Docomo, Technical report, 2014.

  21. Wu, Y., et al. (2016). Device-to-device meets LTE-unlicensed. IEEE Communications Magazine, 54(5), 154–159. doi:10.1109/MCOM.2016.7470950.

    Article  Google Scholar 

  22. Lee, D. H., et al. (2014). Two-stage semidistributed resource management for device-to-device communication in cellular networks. IEEE Transactions on Wireless Communications, 13(4), 190820.

    Google Scholar 

  23. Wang, F., Zhou, B., Jing, X., & Wang, H. (2011). An efficient retransmission scheme for data sharing in D2D assisted cellular networks. In Mobile congress (GMC), 2011. Global, Shanghai (pp. 1–6). doi:10.1109/GMC.2011.6103910.

  24. Janis, P., Koivunen, V., Ribeiro, C., & Korhonen, J. (2009). Interference aware resource allocation for device-to-device radio underlaying cellular networks. In Proceedings of the IEEE VTC 2009-Spring, Barcelona, Spain, April 2009 (pp. 15).

  25. Xu, S., Wang, H., Chen, T., Huang, Q., & Peng, T. (2010). Effective interference cancellation scheme for device-to-device communication underlaying cellular networks, In Proceedings of the IEEE VTC-Fall (pp. 15).

  26. Xu, S., Wang, H., & Chen, T. (2012). Effective interference cancellation mechanisms for D2D communication in multi-cell cellular networks. In IEEE vehicular technology conference-fall.

  27. Wang, H., & Chu, X. (2012). Distance-constrained resource-sharing criteria for device-to-device communications underlaying cellular networks. Electronics Letters, 48(9), 528–530.

    Article  Google Scholar 

  28. 3GPP TS 36.213 V8.2.0: E-UTRA physical layer procedures.

  29. Min, H., Lee, J., Park, S., & Hong, D. (2011). Capacity enhancement using an interference limited area for device-to-device uplink underlaying cellular networks. IEEE Transactions on Wireless Communications, 10(12), 39954000.

    Google Scholar 

  30. Chen, X., Chen, L., Zeng, M., Zhang, X., & Yang, D. (2012). Downlink resource allocation for device-to-device communication underlaying cellular networks. In PIMRC.

  31. Ni, M., Zheng, L., Tong, F., Pan, J., & Cai, L. (2015). A geometrical-based throughput bound analysis for device-to-device communications in cellular networks. IEEE Journal on Selected Areas in Communications, 33(1), 100110.

    Article  Google Scholar 

  32. Ni, M., Zheng, L., Tong, F., Pan, J., & Cai, L. (2015). A geometrical-based throughput analysis for device-to-device communications in a sector-partitioned cell. IEEE Transactions on Wireless Communications, 14(4), 22322244.

    Article  Google Scholar 

  33. Ni, M., Pan, J., & Cai, L. (2014). Power emission density-based interference analysis for random wireless networks. In Proceedings of the IEEE ICC (pp. 440–445).

  34. Pei, Y., & Liang, Y.-C. (2013). Resource allocation for device-to-device communication overlaying two-way cellular networks. IEEE Transactions on Wireless Communications, 12(7), 36113621.

    Article  Google Scholar 

  35. Xu, C., Song, L., Han, Z., Li, D., & Jiao, B. (2012). Resource allocation using a reverse iterative combinatorial auction for device-to-device underlay cellular networks. In Proceedings of the IEEE GLOBECOM (pp. 4542–4547).

  36. Xu, C., Song, L., Han, Z., Zhao, Q., Wang, X., Cheng, X., et al. (2012). Efficiency resource allocation for device-to-device underlay communication systems: A reverse iterative combinatorial auction based approach. IEEE Journal On Selected Areas In Communications/Supplement, 31, 348–358.

  37. WINNER II D1.1.2, WINNER II channel models, https://www.istwinner.org/deliverables.html, September 2007.

  38. Yanli, Xu, Liu, Yong, & Li, Dong. (2015). Resource management for interference mitigation in device-to-device communication. IET Communications, 9(9), 1199–1207.

    Article  Google Scholar 

  39. Ye, Qiaoyang, Al-Shalash, Mazin, Caramanis, Constantine, & Andrews, Jeffrey G. (2015). Distributed resource allocation in device-to-device enhanced cellular networks. IEEE Transactions on Communications, 63(2), 441–454.

    Article  Google Scholar 

  40. Razaviyayn, M., Luo, Z.-Q., Tseng, P., & Pang, J.-S. (2011). A Stackelberg game approach to distributed spectrum management. Mathematical Programming, 129(2), 197224.

    Article  MathSciNet  MATH  Google Scholar 

  41. Kaufman, B., Lilleberg, J., & Aazhang, B. (2013). Spectrum sharing scheme between cellular users and ad-hoc device-to-device users. IEEE Transactions on Wireless Communications, 12(3), 10381049.

    Article  Google Scholar 

  42. Johnson, D. B., Maltz, D. A., & Broch, J. (2001). DSR: The dynamic source routing protocol for multi-hop wireless ad hoc networks. In C. E. Perkins (Ed.), Ad Hoc Network (pp. 139–172). Boston: Addison-Wesley.

    Google Scholar 

  43. Cicalo, S., Tralli, V., & Perez-Neira, A. I. (2011). Centralized vs distributed resource allocation in multi-cell OFDMA systems. In IEEE 73rd vehicular technology conference (VTC Spring), 2011, Yokohama (pp. 1–6). doi:10.1109/VETECS.2011.5956553.

  44. Wu, Y., Wang, J., Qian, L., & Schober, R. (2015). Optimal power control for energy efficient D2D communication and its distributed implementation. IEEE Communications Letters, 19(5), 815–818. doi:10.1109/LCOMM.2015.2407871.

    Article  Google Scholar 

  45. Gu, J., Bae, S. J., Choi, B. G., & Chung, M. Y. (2011). Dynamic power control mechanism for interference coordination of device-to-device communication in cellular networks, In 3rd International conference on ubiquitous and future networks (ICUFN) (pp. 71–75).

  46. Cheng, Yongsheng, Gu, Yuantao, & Lin, Xiaokang. (2013). Combined power control and link selection in device to-device enabled cellular systems. IET Communications, 7(12), 1221–1230.

    Article  Google Scholar 

  47. Berggren, F., Jantti, R., & Seong-Lyun, K. (2001). A generalized algorithm for constrained power control with capability of temporary removal. IEEE Transactions on Vehicular Technology, 50(6), 1604–1612.

    Article  Google Scholar 

  48. Fodor, G., Della Penda, D., Belleschi, M., Johansson, M., & Abrardo, A. (2013). A comparative study of power control approaches for device-to-device communications. In IEEE International Conference on Communications (ICC) (pp. 6008–6013).

  49. Yu, C. H., Tirkkonen, O., Doppler, K., & Ribeiro, C. (2009). Power optimization of device-to-device communication underlaying cellular communication. In 2009 IEEE international conference on communications (pp. 1–5). doi:10.1109/ICC.2009.5199353.

  50. Xing, H., & Hakola, S. (2010). The investigation of power control schemes for a device-to-device communication integrated into OFDMA cellular system. In IEEE 21st international symposium on personal indoor and mobile radio communications (PIMRC), 2010.

  51. Zhou, Z., Dong, M., Ota, K., Shi, R., Liu, Z., & Sato, T. (2015). Game-theoretic approach to energy-efficient resource allocation in device-to-device underlay communications. IET Communications., 9(3), 375–385. doi:10.1049/iet-com.2014.0337.

    Article  Google Scholar 

  52. [11] Wang, F., Xu, C., Song, L., Han, Z., & Zhang, B. (2012). Energy efficient radio resource and power allocation for device-to-device communication underlaying cellular networks. In International conference on wireless communications and signal processing (WCSP), 2012, October 2012.

  53. Zhu, Daohua, Wang, Jiaheng, & Swindlehurst, A. L. (2014). Downlink resource reuse for device-to-device communications underlaying cellular networks. IEEE Signal Processing Letters, 21(5), 531–54.

    Article  Google Scholar 

  54. Janis, P., Chia-Hao, Y., Doppler, K., Ribeiro, C., Wijting, C., Hugl, K., et al. (2009). Device-to-device communication underlaying cellular communications systems. International Journal of Communications, Network and System Sciences, 2(03), 169–178.

    Article  Google Scholar 

  55. Janis, P., Koivunen, V., Cassio, R., Korhonen, J., Doppler, K., & Hugl, K. (2009). Interference-aware resource allocation for device-to-device radio underlaying cellular networks. In IEEE Vehicular Technology Conference (pp. 1–5). doi:10.1109/VETECS.2009.5073611.

  56. Gu, J., Bae, S. J., Hasan, S. F., & Chung, M. Y. (2013). A combined power control and resource allocation scheme for D2D communication underlaying an LTE-advanced system. IEICE Transactions on Communications, E96–B(10), 2683–2692.

    Article  Google Scholar 

  57. Myung, H. G., Lim, J., & Goodman, D. J. (2006). Single carrier FDMA for uplink wireless transmission. IEEE Vehicular Technology Magazine, 1(3), 3038.

    Article  Google Scholar 

  58. Syed, T. S., Gu, J., Hasan, S. F., & Chung, M. Y. (2015). SC-FDMA based resource allocation and power control scheme for D2D-communication using LTE-A uplink resource. EURASIP Journal on Wireless Communications and Networking, 2015(1), 137.

    Article  Google Scholar 

  59. Gu, J., Yoon, H.-W., Lee, J., Bae, S. J., Chung, M. Y. (2015). A resource allocation scheme for device-to-device communications using LTE-A uplink resources. Pervasive and Mobile Computing, 18, 104–117. ISSN: 1574-1192.

  60. Yu, G., Xu, L., Feng, D., Yin, R., Li, G. Y., & Jiang, Y. (2014). Joint mode selection and resource allocation for device-to-device communications. IEEE Transactions on Communications, 62(11), 3814–3824.

    Article  Google Scholar 

  61. Zhu, K., & Hossain, E. (2015). Joint mode selection and spectrum partitioning for device-to-device communication: A dynamic Stackelberg game. IEEE Transactions on Wireless Communications, 14(3), 14061420.

    Article  Google Scholar 

  62. Wang, Q., Wang, W., Jin, S., Zhu, H., & Zhang, N. T. (2014). Mode selection for D2D communication underlaying a cellular network with shared relays. In 6th International conference on wireless communications and signal processing (WCSP) (pp. 1–6). October 23–25, 2014. doi:10.1109/WCSP.2014.6992132

  63. Li, Y., Jin, D., Gao, F., & Zeng, L. (2014). Joint optimization for resource allocation and mode selection in device-to-device communication underlaying cellular networks. In IEEE international conference on communications (ICC), 2014 (pp. 2245–2250). June 10–14, 2014. doi:10.1109/ICC.2014.6883657.

  64. Wen, S., Zhu, X., Zhang, X., & Yang, D. (2013). QoS-aware mode selection and resource allocation scheme for device-to-device (D2D) communication in cellular networks, In IEEE international conference on communication work, ICC, 2013 (pp. 101–105).

  65. Lei, L., Shen, X., Dohler, M., Lin, C., & Zhong, Z. (2014). Queuing models with applications to mode selection in device-to-device communications underlaying cellular networks. IEEE Transactions on Wireless Communications, 13(12), 6697–6715. doi:10.1109/TWC.2014.2335734.

    Article  Google Scholar 

  66. Liu, J., Kawamoto, Y., Nishiyama, H., Kato, N., & Kadowaki, N. (2014). Device-to-device communications achieve efficient load balancing in LTE-advanced networks. IEEE Wireless Communications, 21(2), 57–65. doi:10.1109/MWC.2014.6812292.

    Article  Google Scholar 

  67. Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Junyi, Li., Laroia, R., Jovicic, A. (2010). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. In 48th Annual Allerton conference on communication, control, and computing (Allerton), 2010 (pp. 514-521) 29 September, 2010–October 1, 2010. doi:10.1109/ALLERTON.2010.5706950.

  68. Wu, X., Tavildar, S., Shakkottai, S., Richardson, T., Li, J., Laroia, R., et al. (2013). FlashLinQ: A synchronous distributed scheduler for peer-to-peer ad hoc networks. IEEE/ACM Transactions on Networking, 21(4), 1215–1228. doi:10.1109/TNET.2013.2264633.

    Article  Google Scholar 

  69. Mehlfhrer, C., Colom Ikuno, J., Simko, M., Schwarz, S., Wrulich, M., & Rupp, M. (2011). The Vienna LTE simulators-Enabling reproducibility in wireless communications research. EURASIP Journal on Advances in Signal Processing, 2011, 1–13.

    Google Scholar 

  70. Choi, B.-G., Kim, J. S., Shin, J., Park, A.-S., & Chung, M. Y. (2012). Development of a system-level simulator for evaluating performance of device-to-device communication underlaying LTE-advanced networks. In International conference on computational intelligence, modelling and simulation.

  71. Delivering public safety communications with LTE, 3GPP white paper (Online). Available: http://3gpp.org/Public-Safety

  72. Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Mikls, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(3), 170–177.

    Article  Google Scholar 

  73. Chao, S. L., Lee, H. Y., Chou, C. C., & Wei, H. Y. (2013). Bio-inspired proximity discovery and synchronization for D2D communications. IEEE Communications Letters, 17(12), 23002303.

    Article  Google Scholar 

  74. Huang, P. K., Qi, E., Park, M., & Stephens, A. (2013). Energy efficient and scalable device-to-device discovery protocol with fast discovery. IEEE international work on internet-of-things networks control (IoT-NC), 2013 (p. 19).

  75. Hong, J., Park, S., & Choi, S. (2014). Neighbor device-assisted beacon collision detection scheme for D2D discovery. In International conference on information and communication technology convergence (ICTC), 2014, (pp. 369-370). October 22–24, 2014. doi:10.1109/ICTC.2014.6983157

  76. 3GPP TS 23.303 V13.0.0. Technical specification group services and system aspects; Proximity-based services (ProSe).

  77. Prasad, A., Kunz, A., Velev, G., Samdanis, K., & Song, J. S. (2014). Energy-efficient D2D discovery for proximity services in 3GPP LTE-advanced networks: ProSe discovery mechanisms. IEEE Vehicular Technology Magazine, 9(4), 40–50. doi:10.1109/MVT.2014.2360652.

    Article  Google Scholar 

  78. Kim, J., Yang, J. R., & Kim, D. I. (2011). Optimal relaying strategy for UE relays. In 17th Asia-Pacific conference communication APCC 2011, October (pp. 192–196).

  79. Munir, D., Gu, J., & Chung, M. Y. (2014). Selection of UE relay considering QoS class for public safety services. In 20th Asia-Pacific conference communication on LTE-A network, APCC.

  80. Munir, D., Gu, J., Hasan, S. F., & Chung, M. Y. (2015). Reliable cooperative scheme for public safety services in LTE-A networks. In Transactions on emerging telecommunications technologies. December 2015. doi:10.1002/ett.3008.

  81. 3GPP TSG-RAN WG1 (R1-152778), Discussions on Relay UE selection and discovery

  82. 3GPP TSG-RAN WG1 (R1-153414), Discussions on Relay UE selection and discovery

  83. www.urgentcomm.com Article ’700MHz LTE support’ (http://urgentcomm.com/networks_and_systems/news/700-mhz-lte-support-20090611)

  84. 3GPP TSG RAN WG4 Overview of 700 MHz band in the US.

  85. Doumi, T., Dolan, M. F., Tatesh, S., & Casati, A. (2013). LTE for public safety networks. IEEE Communications Magazine, 51, 106–112.

    Article  Google Scholar 

  86. Access, Evolved Universal Terrestrial Radio. User Equipment (UE) radio transmission and reception, 3GPP Std. TS 36.101.

  87. 3GPP RP-120362, Public Safety Broadband High Power UE for Band 14 (B14) for Region 2.

  88. LRM, REPORT ITU-R M . 2014-1 Digital land mobile systems for dispatch traffic, 2014.

  89. 3GPP TR 22.803, 3GPP TR 22.803 v 12.2.0. (2010). Feasibility study for proximity services (ProSe). 1(9). 2010.

  90. 3GPP TS 22.468, 3GPP TS 22.468 V13.0.0 Group Communication System Enablers for LTE (2014-12).

  91. 3GPP TS 23.468, 3GPP TS 23.468 V13.1.0 Group Communication System Enablers for LTE (GCSE_LTE); Stage 2 (2015-06).

  92. 3GPP TS 23.246, 3GPP TS 23.246 Multimedia broadcastmulticast service (MBMS), Architecture and functional description.

  93. 3GPP TS 23.401, 3GPP TS 23.401 General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access.

  94. Nishiyama, H., Ito, M., & Kato, N. (2014). Relay-by-smartphone: Realizing multihop device-to-device communications. IEEE Communications Magazine, 52(4), 5665.

    Article  Google Scholar 

  95. Pelusi, L., Passarella, A., & Conti, M. (2006). Opportunistic networking: Data forwarding in disconnected mobile ad hoc networks. IEEE Communications Magazine, 44(11), 134141.

    Article  Google Scholar 

  96. Fall, K., & Farrell, S. (2008). DTN: An architectural retrospective. IEEE Journal on Selected Areas in Communications, 26(5), 828836.

    Article  Google Scholar 

  97. Sakano, T., Fadlullah, Z., Ngo, T., Nishiyama, H., Nakazawa, M., Adachi, F., et al. (2013). Disaster-resilient networking: A new vision based on movable and deployable resource units. IEEE Network, 27(4), 4046.

    Article  Google Scholar 

  98. SP-150051—Work Item Description Study on LTE support for V2X services.

  99. 3GPP TR 36.885 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Study on LTE-based V2X Services; (Release 14)

  100. Vanganuru, K., & Ferrante, S., & Sternberg, G. (2012). System capacity and coverage of a cellular network with D2D mobile relays. In IEEE Military Communications Conference.

  101. Saund, S., & Lambert, P. A. (2013). Proximity based games for mobile communication devices. US Patent: Patent Number: US8616975 B1, 31 December, 2013.

  102. Peng, B., Peng, T., Liu, Z., Yang, Y., & Hu, C. (2013). Cluster-based multicast transmission for device-to-device (D2D) communication. In VTC Fall.

  103. Kim, J., & Lee, H. (2015). Geographical proximity based target-group formation algorithm for D2D advertisement dissemination. In IEEE international conference on pervasive computing and communication workshops (PerCom Workshops), 2015 (pp. 272–275). March 23–27, 2015. doi:10.1109/PERCOMW.2015.7134045.

  104. Study on architecture enhancements to support proximity services (ProSe) (Release 12), Sophia-Antipolis, France, 3GPP TR 23.703 v. 1.0.0, Dec. 2013

  105. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Article  Google Scholar 

  106. Yeh, S.-P., Talwar, S., Wu, G., Himayat, N., & Johnsson, K. (2011). Capacity and coverage enhancement in heterogeneous networks. IEEE Wireless Communications, 18(3), 32–38.

    Article  Google Scholar 

  107. Andrews, J. G., Claussen, H., Dohler, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.

    Article  Google Scholar 

  108. Laya, A., Wang, Kun, Widaa, A. A., Alonso-Zarate, J., Markendahl, J., & Alonso, L. (2014). Device-to-device communications and small cells: Enabling spectrum reuse for dense networks. IEEE Wireless Communications, 21(4), 98–105. doi:10.1109/MWC.2014.6882301.

    Article  Google Scholar 

  109. Choi, S. K., Kim, W. J., Lee, H. S., & Kim, D. I. (2013). Interference forwarding for D2D based heterogeneous cellular networks. In IEEE/CIC international conference on communications in China (ICCC), 2013, pp. 130–134, Augest 12–14, 2013. doi:10.1109/ICCChina.2013.6671102

  110. Sathya, V., Ramamurthy, A., Kumar., S. S., & Tamma, B. R. (2016). On improving SINR in LTE HetNets with D2D relays. Computer Communications, 83(1), pp. 27–44. ISSN: 0140-3664.

  111. Sui, Y., Vihrl, J., Papadogiannis, A., Sternad, M., & Svensson, T. (2013). Moving cells: A promising solution to boost performance for vehicular users. IEEE Communications Magazine, 51, 6268. doi:10.1109/MCOM.2013.6525596.

    Article  Google Scholar 

  112. Munir, D., Shah, S. T., Lee, W. Jin, H., Syed F., & Chung, M. Y. (2016). Selection of relay UE with energy harvesting capabilities in public safety environment. In Proceedings of the 30th international conference on information networking (ICOIN ) 2016, (p. 6).

  113. Shah, S. T., Choi, K. W., Hasan, S. F., & Chung, M. Y. (2016). Energy harvesting and information processing in two-way multiplicative relay networks. In Electronics Letters, 52(9), 751–753. doi:10.1049/el.2015.3682.

  114. Shah, S. T., Munir, D., Chung, M. Y., & Choi, K. W. (2016). Information processing and wireless energy harvesting in two-way amplify-and-forward relay networks. In IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing (pp. 1–5). doi:10.1109/VTCSpring.2016.7504290.

  115. Shah, Syed Tariq, Choi, Kae Won, Hasan, Syed Faraz, & Chung, Min Young. (2016). Throughput analysis of two-way relay networks with wireless energy harvesting capabilities. Ad Hoc Networks, 53(15), 123–131. doi:10.1016/j.adhoc.2016.09.024.

    Article  Google Scholar 

  116. Yilmaz, O. N. C. et al. (2014). Smart mobility management for D2D communications in 5G networks. In Wireless communications and networking conference workshops (WCNCW), 2014 IEEE, Istanbul (pp. 219–223). doi:10.1109/WCNCW.2014.6934889.

  117. Alam, M., Yang, D., Rodriguez, J., & Abd-Alhameed, R. (2014). Secure device-to-device communication in LTE-A. IEEE Communications Magazine, 52(4), 66–73. doi:10.1109/MCOM.2014.6807948.

    Article  Google Scholar 

  118. Simulcraft Inc., Republic of Seychelles (Online). Available: http://www.omnetpp.org.

  119. NS-3 Consortium (Online). Available: http://www.nsnam.org/.

  120. Riverbed Technology, USA (Online). Available: http://www.opnet.com/.

  121. Pi, Z., & Khan, F. (2011). An introduction to millimeter-wave mobile broadband systems. IEEE Communications Magazine, 49(6), 101–107. doi:10.1109/MCOM.2011.5783993.

    Article  Google Scholar 

  122. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work!. In IEEE Access, 1, 335–349. doi:10.1109/ACCESS.2013.2260813.

  123. Qiao, J., Shen, X., Mark, J., Shen, Q., He, Y., & Lei, L. (2015). Enabling device-to-device communications in millimeter-wave 5G cellular networks. IEEE Communications Magazine, 53(1), 209–215. doi:10.1109/MCOM.2015.7010536.

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by the New Zealand’s Ministry of Business, Innovation and Employment (MBIE) under the Global Strategic Research Partnerships Fund (3000027323), also known as the Catalyst Fund, 2016–2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Young Chung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, S.T., Hasan, S.F., Seet, BC. et al. Device-to-Device Communications: A Contemporary Survey. Wireless Pers Commun 98, 1247–1284 (2018). https://doi.org/10.1007/s11277-017-4918-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4918-4

Keywords

Navigation