Skip to main content

Advertisement

Log in

Non-Uniform Time Slot Based Modulation for Visible Light Communication System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Recently, visible light communication (VLC) has got increasing attention in the field of indoor wireless communications. VLC has the obligation of lighting besides data communications. The IEEE 802.15.7 task group proposed a VLC modulation format named color shift keying in which data symbols are defined based on the diffused light wavelength. This paper presents a new modulation scheme for indoor wireless visible light communication system named non-uniform time slot modulation (NUTS). The NUTS modulation scheme defines the feeder signals of red, green and blue LEDs as rectangular pulses with appropriate width and their positions. In this method, the time axes of all the three light sources (channels) are slotted to some non-uniform durations that all symbols are spanned over these slots as orthogonal dimensions. The proposed scheme has some advantages with respect to other approaches such as low bit error rate and high bit rate. Furthermore, it provides appropriate synchronization capability. Besides, in the design of NUTS modulation scheme it has been tried to deliberate all practical constraints, as far as possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pergoloni, S., Biagi, M., Rinauro, S., Colonnese, S., Cusani, R., & Scarano, G. (2015). Merging color shift keying and complementary pulse position modulation for visible light illumination and communication. Journal of Lightwave Technology, 33(1), 192–200.

    Article  Google Scholar 

  2. Singh, R., O’Farrell, T., & David, J. P. (2014). An enhanced color shift keying modulation scheme for high-speed wireless visible light communications. Journal of Lightwave Technology, 32(14), 2582–2592.

    Article  Google Scholar 

  3. Singh, R., O’Farrell, T., & David, J. P. (2013). Performance evaluation of IEEE 802.15.7 CSK physical layer. In Globecom workshops (GC Wkshps), 2013 IEEE (pp. 1064–1069). IEEE.

  4. Rajagopal, S., Roberts, R. D., & Lim, S.-K. (2012). IEEE 802.15. 7 visible light communication: Modulation schemes and dimming support. IEEE Communications Magazine, 50(3), 72–82.

    Article  Google Scholar 

  5. Ntogari, G., Kamalakis, T., Walewski, J., & Sphicopoulos, T. (2011). Combining illumination dimming based on pulse-width modulation with visible-light communications based on discrete multitone. IEEE/OSA Journal of Optical Communications and Networking, 3(1), 56–65.

    Article  Google Scholar 

  6. Noshad, M., & Brandt-Pearce, M. (2015). Hadamard coded modulation for visible light communications. arXiv preprint arXiv:1406.2897.

  7. Association, I. S. (2011). IEEE standard for local and metropolitan area networks-Part 15.7: Short-range wireless optical communication using visible light. IEEE Std, 802, 7–2011.

    Google Scholar 

  8. Halder, A., & Barman, A. D. (2014). Improved performance of colour shift keying using voronoi segmentation for indoor communication. In 2014 14th International conference on numerical simulation of optoelectronic devices (NUSOD) (pp. 109–110). IEEE.

  9. Gao, Q., Gong, C., Wang, R., Xu, Z., & Hua, Y. (2014). Constellation design for multi-color visible light communications. arXiv preprint arXiv:1410.5932.

  10. Xu, W., Wang, J., Shen, H., & Zhang, H. (2015). Multi-colour LED specified bipolar colour shift keying scheme for visible light communications. Electronics Letters, 52(2), 133–135.

    Article  Google Scholar 

  11. Cai, H.-B., Zhu, Y.-J., Zhang, J.-K., & Yang, X. (2016). Optimal constellation design for indoor 2 × 2 MIMO visible light communications. IEEE Communications Letters, 20(2), 264–267. doi:10.1109/LCOMM.2015.2512601.

    Article  Google Scholar 

  12. Kong, L., Xu, W., Zhang, H., Zhao, C., & You, X. (2015). A PPM-based four-dimensional modulation scheme for visible light communications. In 2015 International conference on wireless communications and signal processing (WCSP) (pp. 1–5). IEEE.

  13. Liang, X., Yuan, M., Wang, J., Ding, Z., Jiang, M., & Zhao, C. (2017). Constellation design enhancement for color-shift keying modulation of quadrichromatic LEDs in visible light communications. Journal of Lightwave Technology, 35, 3650–3663.

    Article  Google Scholar 

  14. Wu, L., Zhang, Z., Dang, J., & Liu, H. (2015). Adaptive modulation schemes for visible light communications. Journal of Lightwave Technology, 33(1), 117–125.

    Article  Google Scholar 

  15. Amini, C., & Taherpour, A. (2017). Adaptive threshold device for detection of reflections based visible light communication. Optics Communications, 388, 1–11.

    Article  Google Scholar 

  16. Rajó, D., Guerra, V., Borges, R. N., Rufo Torres, J., & Perez-Jimenez, R. (2014). Color shift keying communication system with a modified PPM synchronization scheme. IEEE Photonics Technology Letters, 26(18), 1851–1854.

    Article  Google Scholar 

  17. Chen, Y., & Jiang, M. (2016). Joint colour-and-spatial modulation aided visible light communication system. In 2016 IEEE 83rd vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.

  18. Sarbazi, E., & Uysal, M. (2013). PHY layer performance evaluation of the IEEE 802.15. 7 visible light communication standard. In 2013 2nd International workshop on optical wireless communications (IWOW) (pp. 35–39). IEEE.

  19. Karunatilaka, D., Zafar, F., Kalavally, V., & Parthiban, R. (2015). LED based indoor visible light communications: State of the art. IEEE Communications Surveys and Tutorials, 17(3), 1649–1678.

    Article  Google Scholar 

  20. Matsuda, Y., Kozawa, Y., & Umeda, Y. (2017). Cyclic mapping method for digital color shift keying with RGB-LED array. In Radio and wireless symposium (RWS), 2017 IEEE (pp. 153–155). IEEE.

  21. Aziz, A. E., Wong, K., & Chen, J.-C. (2017). Color shift keying—how its largest obtainable “minimum distance” depends on its preset operating chromaticity and constellation size. Journal of Lightwave Technology, 35, 2724–2733.

    Article  Google Scholar 

  22. Kohno, R. (2004). Project: IEEE P802. 15 Working Group for Wireless Personal Area Networks (WPANs). doc.: IEEE, 802.815-803.

  23. Pathak, P. H., Feng, X., Hu, P., & Mohapatra, P. (2015). Visible light communication, networking, and sensing: A survey, potential and challenges. IEEE Communications Surveys and Tutorials, 17(4), 2047–2077.

    Article  Google Scholar 

  24. Ndjiongue, A. R., Shongwe, T., & Ferreira, H. C. (2017). Closed-form BER expressions for HSV based MPSK-CSK systems. IEEE Communications Letters, 21, 1023–1026.

    Article  Google Scholar 

  25. Proakis, J. G., & Salehi, M. (2008). Digital communications. New York: McGraw-Hill.

    Google Scholar 

  26. Arnon, S. (2015). Visible light communication. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  27. Simon, M. K., & Alouini, M.-S. (2005). Digital communication over fading channels (Vol. 95). New York: Wiley.

    Google Scholar 

  28. Sun, Y., Borah, D. K., & Curry, E. (2016). Optimal symbol set selection in GSSK visible light wireless communication systems. IEEE Photonics Technology Letters, 28(3), 303–306.

    Article  Google Scholar 

  29. Jiang, J., Zhang, R., & Hanzo, L. (2014). Analysis and design of three-stage concatenated colour-shift keying. IEEE Transactions on Vehicular Technology, 64(11), 5126–5136.

    Article  Google Scholar 

  30. Ghazijahani, H. A., Abdollahzadeh, M., Seyedarabi, H., & Niya, M. J. M. (2016). Adaptive CSK modulation guaranteeing HEVC video quality over visible light communication network. In 2016 8th International symposium on telecommunications (IST) (pp. 789–794). IEEE.

  31. Rajbhandari, S., Chun, H., Faulkner, G., Cameron, K., Jalajakumari, A. V., Henderson, R., et al. (2015). High-speed integrated visible light communication system: Device constraints and design considerations. IEEE Journal on Selected Areas in Communications, 33(9), 1750–1757.

    Article  Google Scholar 

  32. Shi, J.-W., Cheng, Y.-H., Wun, J.-M., Chi, K.-L., Hsin, Y.-M., & Benjamin, S. D. (2013). High-speed, high-efficiency, large-area pin photodiode for application to optical interconnects from 0.85 to 1.55 μm wavelengths. Journal of Lightwave Technology, 31(24), 3956–3961.

    Article  Google Scholar 

  33. Shi, J.-W., Chi, K.-L., Li, C.-Y., & Wun, J.-M. (2015). Dynamic analysis of high-efficiency InP-based photodiode for 40 Gbit/s optical interconnect across a wide optical window (0.85 to 1.55 μm). Journal of Lightwave Technology, 33(4), 921–927.

    Article  Google Scholar 

  34. Chen, Y.-H., Wun, J.-M., Wu, S.-L., Chao, R.-L., Huang, J. J.-S., Jan, Y.-H., et al. (2017). Top-illuminated In_0.52 Al_0.48 as-based avalanche photodiode with dual charge layers for high-speed and low dark current performances. IEEE Journal of Selected Topics in Quantum Electronics, 24.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Alizadeh Ghazijahani.

Appendix

Appendix

Table 3 shows the truth table of NUTS modulator circuits logical part operation. S i, S j and S k parameters are states of I, J and K channels, respectively. The state determines whether the channel is selected as fixed (1) or dynamic (0) channel. E1, E2 and E3 are three pins to enable (or disable) delay blocks for channel feeder signals.

Table 3 Truth table of the logical circuit where depicted in Fig. 3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghazijahani, H.A., Niya, M.J.M. Non-Uniform Time Slot Based Modulation for Visible Light Communication System. Wireless Pers Commun 98, 1753–1770 (2018). https://doi.org/10.1007/s11277-017-4943-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4943-3

Keywords

Navigation