Skip to main content
Log in

Improving Common Control Channel Capacity and Performance for Cognitive Radio Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) is a promising solution to cope with the inefficient usage of the frequency spectrum. CR lets its users leverage empty or idle parts of spectrum opportunistically. The medium access control (MAC) sub-layer in CR based networks is playing a crucial role in controlling user’s access to the shared medium and their interaction with Primary Users as well. Coordination and controlling users’ access to common control channel (CCC) at MAC sublayer can be a challenging issue in this type of networks. High availability of this channel is very important and crucial, so designing a mechanism which contributes to this, is of great importance. The CCC’s limited capacity alongside a large number of contending nodes for it causes channel saturation and consequently, leads to its unavailability. The paper introduces a useful method to compute supported saturation capacity of the CCC. It also introduces a new access mode for CCC called “Channelization”, to improve saturation capacity for it. The effect of “Channelization” scheme is also investigated on average packet delay, and according to it desirable parameters for channelization is calculated. Analytical analysis alongside simulation result shows that the channelization method can have a great impact on the increasing saturation capacity, and lower average packet transmission delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhao, Q., & Swami, A. (2007) A survey of dynamic spectrum access: Signal processing and networking perspectives. In Acoustics, speech and signal processing, 2007. ICASSP 2007. IEEE international conference on (Vol. 4, pp. IV–1349).

  2. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.

    Article  Google Scholar 

  3. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). NeXt generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50(13), 2127–2159.

    Article  MATH  Google Scholar 

  4. Akyildiz, I. F., Lee, W.-Y., & Chowdhury, K. R. (2009). CRAHNs: Cognitive radio ad hoc networks. Ad Hoc Networks, 7(5), 810–836.

    Article  Google Scholar 

  5. Lo, B. F., Akyildiz, I. F., & Al-Dhelaan, A. M. (2010). Efficient recovery control channel design in cognitive radio ad hoc networks. IEEE Transactions on Vehicular Technology, 59(9), 4513–4526.

    Article  Google Scholar 

  6. Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communications, 4(1), 40–62.

    Article  Google Scholar 

  7. Kondareddy, Y. R., Agrawal, P., & Sivalingam, K. (2008). Cognitive radio network setup without a common control channel. In IEEE military communications conference, 2008. MILCOM 2008 (pp. 1–6).

  8. Su, H., & Zhang, X. (2007). Cognitive radio based multi-channel MAC protocols for wireless ad hoc networks. In IEEE global telecommunications conference, 2007. GLOBECOM’07 (pp. 4857–4861).

  9. Jia, J., Zhang, Q., & Shen, X. (2008). HC-MAC: A hardware-constrained cognitive MAC for efficient spectrum management. IEEE Journal on Selected Areas in Communications, 26(1), 106–117.

    Article  Google Scholar 

  10. Cordeiro, C., & Challapali, K. (2007). C-MAC: A cognitive MAC protocol for multi-channel wireless networks. In 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, 2007. DySPAN 2007 (pp. 147–157).

  11. Le, L., & Hossain, E. (2008). A MAC protocol for opportunistic spectrum access in cognitive radio networks. In IEEE wireless communications and networking conference, 2008. WCNC 2008 (pp. 1426–1430).

  12. Zhang, X., & Su, H. (2011). CREAM-MAC: Cognitive radio-enabled multi-channel MAC protocol over dynamic spectrum access networks. IEEE Journal of Selected Topics in Signal Processing, 5(1), 110–123.

    Article  Google Scholar 

  13. Ma, L., Han, X., & Shen, C.-C. (2005). Dynamic open spectrum sharing MAC protocol for wireless ad hoc networks. In 2005 first IEEE international symposium on new frontiers in dynamic spectrum access networks, 2005. DySPAN 2005 (pp. 203–213).

  14. Kondareddy, Y. R., & Agrawal, P. (2008). Synchronized MAC protocol for multi-hop cognitive radio networks. In IEEE international conference on communications, 2008. ICC’08 (pp. 3198–3202).

  15. Thilina, K. G. M., Hossain, E., & Kim, D. I. (2016). DCCC-MAC: A dynamic common-control-channel-based MAC protocol for cellular cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3597–3613.

    Article  Google Scholar 

  16. Nezhadal, S. M. M., Berangi, R., & Fathy, M. (2012). Common control channel saturation detection and enhancement in cognitive radio networks. International Journal of Distributed and Parallel Systems, 3(1), 15.

    Article  Google Scholar 

  17. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18(3), 535–547.

    Article  MathSciNet  Google Scholar 

  18. Lee, W.-Y., & Akyildiz, I. F. (2008). Optimal spectrum sensing framework for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(10), 3845–3857.

    Article  Google Scholar 

  19. Tay, Y. C., & Chua, K. C. (2001). A capacity analysis for the IEEE 802.11 MAC protocol. Wireless Networks, 7(2), 159–171.

    Article  MATH  Google Scholar 

  20. Calvo, R. A., & Campo, J. P. (2007). Adding multiple interface support in NS-2. University of Cantabria.

  21. Borriello, D. (2005). [ns] Problem with protocol NOAH for static multihop. 09 Dec 2005.

  22. Chatzimisios, P., Boucouvalas, A. C., & Vitsas, V. (2003). Packet delay analysis of IEEE 802.11 MAC protocol. Electronics Letters, 39(18), 1358.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to SeyedMorteza MirhoseiniNejad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MirhoseiniNejad, S., Beragi, R. & Asadi, A. Improving Common Control Channel Capacity and Performance for Cognitive Radio Networks. Wireless Pers Commun 98, 2521–2534 (2018). https://doi.org/10.1007/s11277-017-4987-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4987-4

Keywords

Navigation