Skip to main content
Log in

Novel Secure Pseudorandom Number Generator Based on Duffing Map

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The fields of applied sciences and engineering require Pseudorandom Number Generators which exhibit useful statistical properties. In this paper, a novel algorithm for generating pseudorandom numbers has been proposed. This new algorithm is based on Duffing map. The aim of this paper is to generate pseudorandom bit streams based on chaotic map. The main objective is to find its potential to be used in applied sciences and engineering applications. To use this algorithm effectively in practical applications, the strength of this algorithm has been tested using various statistical tests like initial seed value, key sensitivity test, CPU performance test and pseudorandom orbit. The proposed pseudorandom number generator is further analyzed and evaluated with NIST statistical test suite. The results obtained from these experimental and statistical tests demonstrate and prove that the new generator has the potential to be applied successfully in mathematical sciences, applied physics, computer science and electrical engineering etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akhshani, A., Akhavan, A., Mobaraki, A., Lim, S. C., & Hassan, Z. (2014). Pseudo random number generator based on quantum chaotic map. Communications in Nonlinear Science and Numerical Simulation, 19(1), 101–111.

    Article  MATH  Google Scholar 

  2. François, M., Grosges, T., Barchiesi, D., & Erra, R. (2014). Pseudo-random number generator based on mixing of three chaotic maps. Communications in Nonlinear Science and Numerical Simulation, 19(4), 887–895.

    Article  MathSciNet  MATH  Google Scholar 

  3. Hu, H., Liu, L., & Ding, N. (2013). Pseudorandom sequence generator based on the Chen chaotic system. Computer Physics Communications, 184(3), 765–768.

    Article  MathSciNet  Google Scholar 

  4. Francois, M., Grosges, T., Barchiesi, D., & Erra, R. (2013). A new pseudo-random number generator based on two chaotic maps. Informatica, 24(2), 181–197.

    MathSciNet  MATH  Google Scholar 

  5. Cicek, I., Pusane, A. E., & Dundar, G. (2014). A novel design method for discrete time chaos based true random number generators. INTEGRATION, The VLSI Journal, 47(1), 38–47.

    Article  Google Scholar 

  6. Beirami, A., Nejati, H., & Ali, W. H. (2012). Zigzag map: A variability-aware discrete-time chaotic-map truly random number generator. Electronics Letters, 48(24), 1537–1538.

    Article  Google Scholar 

  7. Nejati, H., Beirami, A., & Ali, W. H. (2012). Discrete-time chaotic-map truly random number generators: Design, implementation, and variability analysis of the zigzag map. Analog Integrated Circuits and Signal Processing, 73(1), 363–374.

    Article  Google Scholar 

  8. Wang, X. Y., & Xie, Y. X. (2012). A design of pseudo-random bit generator based on single chaotic system. International Journal of Modern Physics C, 23(03), 1250024.

    Article  MATH  Google Scholar 

  9. Wang, X. Y., & Yang, L. (2012). Design of pseudo-random bit generator based on chaotic maps. International Journal of Modern Physics B, 26(32), 1250208.

    Article  MathSciNet  Google Scholar 

  10. Wang, X. Y., & Qin, X. (2012). A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dynamics, 70(2), 1589–1592.

    Article  MathSciNet  Google Scholar 

  11. François, M., Grosges, T., Barchiesi, D., & Erra, R. (2012). A new image encryption scheme based on a chaotic function. Signal Processing: Image Communication, 27(3), 249–259.

    MATH  Google Scholar 

  12. Kanso, A., Yahyaoui, H., & Almulla, M. (2012). Keyed hash function based on a chaotic map. Information Sciences, 186(1), 249–264.

    Article  MathSciNet  MATH  Google Scholar 

  13. Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2012). A chaotic path planning generator for autonomous mobile robots. Robotics and Autonomous Systems, 60(4), 651–656.

    Article  Google Scholar 

  14. Anees, A., Siddiqui, A. M., Ahmed, J., & Hussain, I. (2014). A technique for digital steganography using chaotic maps. Nonlinear Dynamics, 75(4), 807–816.

    Article  Google Scholar 

  15. Lozi, R. (2012). Emergence of randomness from chaos. International Journal of Bifurcation and Chaos, 22(02), 1250021.

    Article  MathSciNet  MATH  Google Scholar 

  16. Alligood, K. T., Sauer, T. D., & Yorke, J. A. (1997). Chaos: An introduction to dynamical systems. New York: Springer.

    Book  MATH  Google Scholar 

  17. http://www.mathworks.com/products (2016). Accessed 28 March 2016.

  18. Stoyanov, B., & Kordov, K. (2015). Novel secure pseudo-random number generation scheme based on two tinkerbell maps. Advanced Studies in Theoretical Physics, 9(9), 411–421.

    Article  Google Scholar 

  19. François, M., Defour, D. & Berthoé, P. (2014) A pseudo-random bit generator based on three chaotic logistic maps and IEEE 754-2008 floating-point arithmetic. In T.V. Gopal, M. Agrawal, A. Li & S.B. Cooper (Eds.), Theory and applications of models of computation: 11th Annual Conference, TAMC 2014, Chennai, India, April 11-13, 2014, Proceedings (pp. 229–247). Berlin: Springer International Publishing.

  20. Pareek, N. K., Patidar, V., & Sud, K. K. (2010). A random bit generator using chaotic maps. IJ Network Security, 10(1), 32–38.

    Google Scholar 

  21. Lambert, H. S. (2006). International Business Machines Corporation, Method and apparatus for encryption of data. U.S. Patent 7,133,522

  22. Alvarez, G., & Li, S. (2006). Some basic cryptographic requirements for chaos-based cryptosystems. International Journal of Bifurcation and Chaos, 16(08), 2129–2151.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, L., & Xiao-Jun, T. (2012). A new pseudorandom number generator based on a complex number chaotic equation. Chinese Physics B, 21(9), 090506.

    Article  Google Scholar 

  24. Werter, M. J. (1998). An improved chaotic digital encoder. IEEE Transactions on Circuits and Systems. 2, Analog and Digital Signal Processing, 45(2), 227–229.

    Article  Google Scholar 

  25. Tong, X., & Cui, M. (2010). Feedback image encryption algorithm with compound chaotic stream cipher based on perturbation. Science in China Series F: Information Sciences, 53(1), 191–202.

    MathSciNet  Google Scholar 

  26. http://csrc.nist.gov/publications/nistpubs/800-22-rev1a/SP800-22rev1a.pdf (2016). Accessed 28 March 2016.

  27. IEEE Computer Society, IEEE standard for binary floating-point arithmetic, ANSI/IEEE Std. 754, (1985).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamoon Riaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riaz, M., Ahmed, J., Shah, R.A. et al. Novel Secure Pseudorandom Number Generator Based on Duffing Map. Wireless Pers Commun 99, 85–93 (2018). https://doi.org/10.1007/s11277-017-5039-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5039-9

Keywords

Navigation