Skip to main content

Advertisement

Log in

Cluster-PSO Based Resource Orchestration for Multi-task Applications in Vehicular Cloud

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Vehicular cloud computing (VCC) provides a vehicular user attaching several resources with different types at the same time. Additionally, the vehicular applications especially for big data processing are always complicated and may be decomposed into several fine-grained tasks. When offloading the complicated multi-task application to the vehicular clouds, the task executes individually in terms of its own computation, storage and bandwidth requirement. Different from the task offloading in mobile cloud computing which aims to optimize the energy consumption, the important metric for vehicular users is the application delay. Moreover, the moving vehicles always have the similar resource properties and may form the solution clusters when finding the resource orchestration policy, which brings an opportunity of improving resource orchestration performance. In this paper, we formulate the VCC resource orchestration as an optimization problem, and propose a cluster-particle swarm optimization (PSO) algorithm to obtain the resource orchestration policy. A fast cluster algorithm is used to divide the solution space and generate sub-swarms for better exploring the orchestration solutions. The experiment results show that the cluster-PSO algorithm can achieve a higher resource orchestration accuracy in an acceptable time comparing to the other PSO algorithms. Especially, when there are more tasks in an application and the vehicle has more optional VCC resources, the performance of the cluster-PSO based resource orchestration is outstanding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kim, R., Lim, H., & Krishnamachari, B. (2016). Prefetching-based data dissemination in vehicular cloud systems. IEEE Transactions on Vehicular Technology, 65(1), 292–306.

    Article  Google Scholar 

  2. Wang, C., Li, Y., Jin, D., & Chen, S. (2016). On the serviceability of mobile vehicular cloudlets in a large-scale urban environment. IEEE Transactions on Intelligent Transportation Systems, 17(10), 2960–2970.

    Article  Google Scholar 

  3. Chen, X., Jiao, L., Li, W., & Fu, X. (2015). Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5), 2795–2808.

    Article  Google Scholar 

  4. Hou, X., Li, Y., Chen, M., et al. (2016). Vehicular fog computing: A viewpoint of vehicles as the infrastructures. IEEE Transactions on Vehicular Technology, 65(6), 3860–3873.

    Article  Google Scholar 

  5. Ma, Z., Tan, Z.-H., & Guo, J. (2016). Feature selection for neutral vector in EEG signal classification. Neurocomputing, 174(1), 937–945.

    Article  Google Scholar 

  6. Xu, P., Yin, Q., Huang, Y., Song, Y.-Z., Ma, Z., Wang, L., et al. (2017) Cross-modal subspace learning for fine-grained sketch-based image retrieval. Neurocomputing. https://doi.org/10.1016/j.neucom.2017.05.099.

    Google Scholar 

  7. Rajiv, R., Boualem, B., Schahram, D., & Michael, P. P. (2015). Cloud resource orchestration programming overview, issues, and directions. IEEE Internet Computing, 19, 46–56.

    Google Scholar 

  8. Liu, T., Chen, F., Ma, Y., & Xie, Y. (2016). An energy-efficient task scheduling for mobile devices based on cloud assistant. Future Generation Computer Systems, 61, 1–12.

    Article  Google Scholar 

  9. Ali, F. A., Simoens, P., Verbelen, T., Demeester, P., & Dhoedt, B. (2016). Mobile device power models for energy efficient dynamic offloading at runtime. Journal of Systems and Software, 113, 173–187.

    Article  Google Scholar 

  10. Xu, K., Wang, K. C., Amin, R., Martin, J., & Izard, R. (2014). A fast cloud-based network selection scheme using coalition formation games in vehicular networks. IEEE Transactions on Vehicular Technology, 64(11), 5327–5339.

    Article  Google Scholar 

  11. Jeong, J., Jeong, H., Lee, E., Oh, T., & Du, D. H. C. (2016). SAINT: Self-adaptive interactive navigation tool for cloud-based vehicular traffic optimization. IEEE Transactions on Vehicular Technology, 65(6), 4053–4067.

    Article  Google Scholar 

  12. Qin, Y., Huang, D., & Zhang, X. (2012). VehiCloud: Could computing facilitating routing in vehicular networks (pp. 1438–1445). Liverpool: IEEE TruseCom.

    Google Scholar 

  13. Zhang, H., Zhang, Q., & Du, X. (2015). Toward vehicle-assisted cloud computing for smartphones. IEEE Transactions on Vehicular Technology, 64(12), 5610–5618.

    Article  Google Scholar 

  14. Luigi, V., Thrasyvoulos, S., & Chadi, B. (2016). Storage on wheels: Offloading popular contents through a vehicular cloud. In IEEE international symposium on a world of wireless, mobile and multimedia networks (pp. 1–9).

  15. “Information and Communication Technologies”, Horizon 2020 Work Program, 2014–2015.

  16. Zuo, X., Zhang, G., & Tan, W. (2014). Self-adaptive learning PSO-based deadline constrained task scheduling for hybrid IaaS cloud. IEEE Transactions on Automation Science and Engineering, 11(2), 564–573.

    Article  Google Scholar 

  17. Ramisetty, S., Calyam, P., & Cecil, J. (2015). Ontology integration for advanced manufacturing collaboration in cloud platforms. In IFIP/IEEE international symposium on integrated network management (pp. 504–510).

  18. Farris, I., Militano, L., Nitti, M., Atzori, L., & Iera, A. (2016). MIFaaS: A mobile IoT federation-as-a-service model dynamic cooperation of IoT cloud providers. Future Generation Computer Systems., 70, 126–137.

    Article  Google Scholar 

  19. Liang, H., Lin, X. C., Huang, D., Shen, X., & Peng, D. (2012). An SMDP-based service model for interdomain resource allocation in mobile cloud networks. IEEE Transactions on Vehicular Technology, 61(5), 2222–2232.

    Article  Google Scholar 

  20. Terefe, M. B., Lee, H., Heo, N., Fox, G. C., & Oh, S. (2016). Energy-efficient multisite offloading policy using Markov decision process for mobile cloud computing. Pervasive & Mobile Computing, 27, 75–89.

    Article  Google Scholar 

  21. Deng, S., Huang, L., Taheri, J., & Zomaya, A. Y. (2015). Computation offloading for service workflow in mobile cloud computing. IEEE Transactions on Parallel and Distributed Systems, 26(12), 3317–3329.

    Article  Google Scholar 

  22. Kao, Y. H., Krishnamachari, B., Ra, M. R., & Fan, B. (2017). Herms: Latency optimal task assignment for resource-constrained mobile computing. IEEE Transactions on Mobile Computing, 16(11), 3056–3069.

    Article  Google Scholar 

  23. Kaewpuang, R., Niyato, D., Wang, P., & Hossain, E. (2013). A framework for cooperative resource management in mobile cloud computing. IEEE Journal on Selected Areas in Communications, 31(12), 2685–2700.

    Article  Google Scholar 

  24. Ma, Z., Teschendorff, A. E., Leijon, A., Qiao, Y., Zhang, H., & Guo, J. (2015). Variational bayesian matrix factorization for bounded support data. IEEE Transaction on Pattern Analysis and Machine Intelligence, 37(4), 876–889.

    Article  Google Scholar 

  25. Ma, Z., & Leijon, A. (2011). Bayesian estimation of beta mixture models with variational inference. IEEE Transaction on Pattern Analysis and Machine Intelligence, 33, 2160–2173.

    Article  Google Scholar 

  26. Qi, Q., Liao, J., Wang, J., Li Q., & Cao, Y. (2016). Software defined resource orchestration system for multitask application in heterogeneous mobile cloud computing. Mobile Information Systems. http://dx.doi.org/10.1155/2016/2784548.

  27. Eshed, O.-B., & Mohan, M. T. (2016). Are all objects equal? Deep spatio-temporal importance prediction in driving videos. In 23rd International conference on pattern recognition (ICPR), Cancun, Mexico, 4–8 December.

  28. Ma, Z., Tan, Z.-H., & Guo, J. (2016). Feature selection for neutral vector in EEG signal classification. Neurocomputing, 174, 937–945.

    Article  Google Scholar 

  29. Ma, Z., Xue, J.-H., Leijon, A., Tan, Z.-H., Yang, Z., & Guo, J. (2016). Decorrelation of neutral vector variables: Theory and applications. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2016.2616445.

    Google Scholar 

  30. Liao, J., Yang, D., Li, T., Qi, Q., Wang, J., & Sun, H. (2016). Fusion feature for LSH-based image retrieval in a cloud datacenter. Multimedia Tools and Applications, 75(23), 15405–15427.

    Article  Google Scholar 

  31. Yu, H., Tan, Z.-H., Ma, Z., Martin, R., & Guo, J. (2017). Spoofing detection in automatic speaker verification systems using DNN classifiers and dynamic acoustic features. IEEE Transactions on Neural Networks and Learning Systemshttps://doi.org/10.1109/TNNLS.2017.2771947.

  32. Ma, Z., Xie, J., Li, H., Sun, Q., Si, Z., Zhang, J., et al. (2017). The role of data analysis in the development of intelligent energy networks. IEEE Network Magazine, 31(5), 88–95.

    Article  Google Scholar 

Download references

Acknowledgements

This research was jointly supported by: (1) National Natural Science Foundation of China (Nos. 61471063, 61671079, 61771068, 61421061, 61302087); (2) Key (Keygrant) Project of Chinese Ministry of Education (No. MCM20130310); (3) Beijing Municipal Natural Science Foundation (No. 4152039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Qi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Q., Wang, J., Cao, Y. et al. Cluster-PSO Based Resource Orchestration for Multi-task Applications in Vehicular Cloud. Wireless Pers Commun 102, 2133–2155 (2018). https://doi.org/10.1007/s11277-017-5046-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5046-x

Keywords

Navigation