Skip to main content
Log in

Modeling and Analysis of IEEE 802.15.4 Multi-hop Networks for IoT Applications

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Multi-hop wireless networks play a crucial role in extending the coverage of monitoring and automation applications in the Internet of Things arena. In this paper, we propose an analytical model for analyzing the performance of IEEE 802.15.4 based multi-hop networks. We accurately model the IEEE 802.15.4 MAC for three different kinds of nodes (leaf, relay and pre-gateway nodes) using 3D Markov chains. Performance of the proposed model is analyzed using reliability, channel congestion and duty cycle as the key performance metrics. The proposed model analyzes the network behavior accurately by achieving less than 5% error when compared with simulation outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Xu, L. D., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10, 2233–2243.

    Article  Google Scholar 

  2. Liu, F., Tan, C., Lim, E., & Choi, B. (2016). Traversing knowledge networks: An algorithmic historiography of extant literature on the Internet of Things (IoT). Journal of Management Analytics, 4, 334.

    Google Scholar 

  3. Zhai, C. (2016). Delay-aware and reliability-aware contention-free MFTDMA protocol for automated RFID monitoring in industrial IoT. Journal of Industrial Information Integration, 3, 819.

    Article  Google Scholar 

  4. Wireless Medium Access Control (MAC) and Physical Layer (PHY). (2006). Specifications for low-rate wireless personal area. IEEE STD 802.15.4-2996, September, Part 15.4: Networks (WPANs), IEEE. http://www.ieee802.org/15.

  5. Chen, K. L., Chen, Y. R., Tsai, Y. P., & Chen, N. (2017). A novel wireless multifunctional electronic current transformer based on ZigBee-based communication. IEEE Transactions on Smart Grid, 8, 1888–1897.

    Article  Google Scholar 

  6. Lemos, L. C., Silva, J. J., & Neto, J. S. R. (2016). Vibration analysis for fouling detection using hammer impact test and ZigBee based wireless sensor network. In 2016 IEEE 25th international symposium on industrial electronics (ISIE) (pp. 1190–1195).

  7. Kang, M. S., Ke, Y. L., & Li, J. S. (2011). Implementation of smart loading monitoring and control system with ZigBee wireless network. In 2011 6th IEEE conference on industrial electronics and applications (pp. 907–912).

  8. Lu, C., et al. (2016). Real-time wireless sensor-actuator networks for industrial cyber-physical systems. Proceedings of the IEEE, 104, 1013–1024.

    Article  Google Scholar 

  9. Willig, A., Matheus, K., & Wolisz, A. (2005). Wireless technology in industrial networks. Proceedings of the IEEE, 93, 1130–1151.

    Article  Google Scholar 

  10. Bianchi, G. (2000). Performance analysis of the IEEE 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 18, 535–547.

    Article  Google Scholar 

  11. Buratti, C., & Verdone, R. (2009). Performance analysis of IEEE 802.15.4 non beacon-enabled mode. IEEE Transactions on Vehicular Technology, 58, 3480–3493.

    Article  Google Scholar 

  12. Pollin, S., Ergen, M., Ergen, S. C., Bougard, B., Van der Perre, L., Moerman, I., et al. (2008). Performance analysis of slotted carrier sense IEEE 802.15.4 medium access layer. IEEE Transactions on Wireless Communications, 7, 3359–3371.

    Article  Google Scholar 

  13. He, J., Tang, Z., Chen, H. H., & Zhang, Q. (2009). An accurate and scalable analytical model for IEEE 802.15.4 slotted CSMA/CA networks. IEEE Transactions on Wireless Communications, 8, 440–448.

    Article  Google Scholar 

  14. Park, P., Di Marco, P., Fischione, C., & Johansson, K. H. (2013). Modelling and optimization of the IEEE 802.15.4 protocol for reliable and timely communications. IEEE Transactions on Parallel and Distributed Systems, 24, 550–564.

    Article  Google Scholar 

  15. Jung, C. Y., Hwang, H. Y., Sung, D. K., & Hwang, G. U. (2009). Enhanced Markov chain model and throughput analysis of the slotted CSMA/CA for IEEE 802.15.4 under unsaturated traffic conditions. IEEE Transactions on Vehicular Technology, 58, 550–564.

    Article  Google Scholar 

  16. Hira, M., Tobagi, F., & Medepalli, K. (2007). Throughput analysis of a path in an IEEE 802.11 multi-hop wireless network. In Proceedings of IEEE WCNC (pp. 441–446).

  17. Baras, J., Tabatabaee, V., Papageorgiou, P., & Rentz ,N. (2008). Modelling and optimization for multi-hop wireless networks using fixed point and automatic differentiation. In Proceedings of WiOPT (pp. 295–300).

  18. Carvalho, M. M., & Garcia-Luna-Aceves, J. J. (2004). A scalable model for channel access protocols in multi-hop ad hoc networks. In Proceedings of ACM MobiCom (pp. 330–344).

  19. Di Marco, Piergiuseppe, Park, Pangun, Fischione, Carlo, & Johansson, Karl Henrik. (2012). Analytical modeling of multi-hop IEEE 802.15.4 networks. IEEE Transactions on Vehicular Technology, 61, 3191–3208.

    Article  Google Scholar 

  20. Park, P., Fischione, C., Bonivento, A., Johansson, K. H., & Sangiovanni-Vincentelli, A. (2011). Breath: An adaptive protocol for industrial control applications using wireless sensor networks. IEEE Transactions on Mobile Computing, 10, 821–838.

    Article  Google Scholar 

  21. Srivastava, R., & Kumar, A. (2012) Performance analysis of beacon-less IEEE 802.15.4 multi-hop networks. In Fourth international conference on communication systems and networks (COMSNETS) (pp. 1–10).

  22. Kiran, M. P. R. S., Subrahmanyam, V., & Rajalakshmi, P. (2017). Novel power management scheme and effects of constrained on-node storage on performance of MAC layer for industrial iot networks. IEEE Transactions on Industrial Informatics, PP(99), 1–1. https://doi.org/10.1109/TII.2017.2766783.

    Article  Google Scholar 

Download references

Acknowledgements

This work is jointly supported by Visvesvaraya Ph.D. Scheme, Ministry of Electronics and Information Technology (MEITY, Govt. of India) and Indian Institute of Technology Hyderabad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. R. S. Kiran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiran, M.P.R.S., Prasad, Y.R.V. & Rajalakshmi, P. Modeling and Analysis of IEEE 802.15.4 Multi-hop Networks for IoT Applications. Wireless Pers Commun 100, 429–448 (2018). https://doi.org/10.1007/s11277-017-5082-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5082-6

Keywords

Navigation