Skip to main content
Log in

Fractal Dual-Mode Open-Loop Quasi-Elliptic Bandpass Filter with Source-Load Coupling

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

To realize the feature of small size and high selectivity, a microstrip miniature fractal quasi-elliptic bandpass filter (BPF) with two transmission zeros (TZs) near each skirt is investigated in this paper. The TZs are created by source-load coupling between the input and output E-shaped feeding structures. By using a dual-mode Minkowski fractal shorted stub loaded open-loop resonator, the proposed BPF achieved a size reduction of 97.5% compared with the conventional square dual-mode loop BPF. Even mode analysis is adopted to characterize the Minkowski structure. The frequency responses of the current BPF were simulated and measured with good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hong, J. S., & Lancaster, M. (2000). Design of highly selective microstrip bandpass filters with a single pair of attenuation poles at finite frequencies. IEEE Transactions on Microwave Theory and Techniques, 48(7), 1098–1107.

    Article  Google Scholar 

  2. Chen, J. X., Zhan, Y., & Xue, Q. (2015). Novel LTCC distributed-element wideband bandpass filter based on the dual-mode stepped-impedance resonator. IEEE Transactions on Components, Packaging and Manufacturing Technology, 5(3), 372–380.

    Article  Google Scholar 

  3. Chen, J. X., Ma, Y., Cai, J., Zhou, L.-H., Bao, Z.-H., & Che, W. (2015). Novel frequency-agile bandpass filter with wide tuning range and spurious suppression. IEEE Transactions on Industrial Electronics, 62(10), 6428–6435.

    Article  Google Scholar 

  4. Jin, C., & Shen, Z. (2014). Compact triple-mode filter based on quarter-mode substrate integrated waveguide. IEEE Transactions on Microwave Theory and Techniques, 62(1), 37–45.

    Article  MathSciNet  Google Scholar 

  5. Moscato, S., Tomassoni, C., Bozzi, M., & Perregrini, L. (2016). Quarter-mode cavity filters in substrate integrated waveguide technology. IEEE Transactions on Microwave Theory and Techniques, 64(8), 2538–2547.

    Article  Google Scholar 

  6. Xu, F. P., Wang, J., & Zhu, L. (2015). Compact balanced FSIR bandpass filter modified for enhancing common-mode suppression. IEEE Microwave and Wireless Components Letters, 25(3), 154–156.

    Article  MathSciNet  Google Scholar 

  7. Zhang, S., Zhu, L., & Weerasekera, R. (2015). Synthesis of inline mixed coupled quasi-elliptic bandpass filters based on λ/4 resonators. IEEE Transactions on Microwave Theory and Techniques, 63(10), 3487–3493.

    Article  Google Scholar 

  8. Armando, F. P., Lujambio, A., Martel, J., Media, F., Mesa, F., & Boix, R.-R. (2015). Simple and compact balanced bandpass filters based on magnetically coupled resonators. IEEE Transactions on Microwave Theory and Techniques, 63(6), 1843–1853.

    Article  Google Scholar 

  9. Tomassoni, C., Silvestri, L., Bozzi M., & Perregrini, L. (2015). Quasi-elliptic SIW band-pass filter based on mushroom-shaped resonators. In 45th European microwave conference (EuMC2015), Paris, France, 7–10.

  10. Ding, J., Shi, S., & Wu, W. (2016). Cavity bandpass filters with quasi-elliptic response at 220 GHz. In Proceedings IEEE international conference on microwave and millimeter wave technology (ICMMT) (pp. 940–942), Beijing, China.

  11. Zhu, F., Hong, W., Chen, J. X., & Wu, K. (2014). Quarter-wavelength stepped-impedance resonator filter with mixed electric and magnetic coupling. IEEE Microwave and Wireless Components Letters, 24(2), 90–92.

    Article  Google Scholar 

  12. Hong, J. S., & Lancaster, M. J. (1995). Bandpass characteristics of new dualmode microstrip square loop resonators. Electronics Letters, 31(11), 891–892.

    Article  Google Scholar 

  13. Eryilmaz, G. M., Gunturkun, E., Gorur, A., & Karpuz, C. (2009). Microstrip bandstop filter using a dual-mode square loop resonator. Microwave and Optical Technology Letters, 51(1), 147–150.

    Article  Google Scholar 

  14. Montejo-Garai, J. R. (2000). Synthesis of N-even order symmetric filters with N transmission zeros by means of source-load cross coupling. Electronics Letters, 36(3), 232–233.

    Article  Google Scholar 

  15. Chen, F.-C., Chu, Q.-X., & Tu, Z.-H. (2009). Design of compact dual-band bandpass filter using short stub loaded resonator. Microwave and Optical Technology Letters, 51(4), 959–963.

    Article  Google Scholar 

  16. Xu, Z. Q., Wang, P., Qian, K. W., & Tian, Z. (2013). Substrate integrated waveguide filter with embedded mixed source–load coupling. Electronics Letters, 69(23), 1464–1465.

    Article  Google Scholar 

  17. Gao, L., & Zhang, X. Y. (2013). High-selectivity dual-band bandpass filter using a quad-mode resonator with source-load coupling. IEEE Microwave and Wireless Components Letters, 23(9), 474–476.

    Article  Google Scholar 

  18. Zhu, H., & Abbosh, A. M. (2016). Tunable balanced bandpass filter with widetuning range of center frequency and bandwidth using compact coupled-line resonator. IEEE Microwave and Wireless Components Letters, 26(1), 7–9.

    Article  Google Scholar 

  19. Lee, E. C., Soh, P. J.,Hashim, N. B., et al. (2011). Design and fabrication of a flexible Minkowski fractal antenna for VHF applications. In Proceedings of the 5th European conference on antennas and propagation EUCAP 2011, Rome, Italy, 10–12.

  20. Ma, K., Ma, J. G., Yeo, K. S., & Do, M. A. (2006). A compact coupling controllable filter with separate electric and magnetic coupling paths. IEEE Transactions on Microwave Theory and Techniques, 54(3), 1113–1119.

    Article  Google Scholar 

  21. Li, Y., Li, L., Zhang, Y., & Zhao, C. (2015). Design and synthesis of multi-layer frequency selective surface based on antenna-filter-antenna using minkowski fractal structures. IEEE Transactions on Antennas and Propagation, 63(1), 133–141.

    Article  MathSciNet  Google Scholar 

  22. Dhar, S., Patra, K., Ghatak, R., Gupta, B., & Poddar, D. R. (2013). A wideband minkowski fractal dielectric resonator antenna. IEEE Transactions on Antennas and Propagation, 61(6), 2895–2902.

    Article  MathSciNet  Google Scholar 

  23. Pozar, D. M. (2005). Microwave engineering (3rd ed.). New York: Wiley.

    Google Scholar 

  24. Li, Q., Zhang, Y., & Fan, Y. (2015). Dual-band in-phase filtering power dividers integrated with stub-loaded resonators. IET Microwaves, Antennas & Propagation, 9(7), 695–699.

    Article  MathSciNet  Google Scholar 

  25. Dhar, S., Patra, K., Ghatak, R., Gupta, B., & Poddar, D. R. (2015). A dielectric resonator-loaded minkowski fractal-shaped slot loop heptaband antenna. IEEE Transactions on Antennas and Propagation, 63(4), 1521–1529.

    Article  MathSciNet  Google Scholar 

  26. Zhang, R., & Zhu, L. (2014). Synthesis of dual-wideband bandpass filters with source-load coupling network. IEEE Transactions on Microwave Theory and Techniques, 62(3), 441–449.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Tianjin Research Program of Application Foundation and Advanced Technology, China under Grant 14JCQNJC0110.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ying Feng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, LY. Fractal Dual-Mode Open-Loop Quasi-Elliptic Bandpass Filter with Source-Load Coupling. Wireless Pers Commun 103, 1113–1120 (2018). https://doi.org/10.1007/s11277-017-5220-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-5220-1

Keywords

Navigation